Application of an explicit min-max MPC to a scaled laboratory process

被引:17
|
作者
de la Peña, DM [1 ]
Ramírez, DR [1 ]
Camacho, EF [1 ]
Alamo, T [1 ]
机构
[1] Univ Seville, Escuela Super Ingn, Dept Ingn Sistemas & Automat, Seville 41092, Spain
关键词
predictive control; minimax techniques; multi-parametric programming; piecewise linear controllers; uncertainty;
D O I
10.1016/j.conengprac.2004.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Min-max model predictive control (MMMPC) requires the on-line solution of a min-max problem, which can be computationally demanding. The piecewise affine nature of MMMPC has been proved for linear systems with quadratic performance criterion. This paper shows how to move most computations off-line obtaining the explicit form of this control law by means of a heuristic algorithm. These results are illustrated with an application to a scaled laboratory process with dynamics fast enough to preclude the use of numerical solvers. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1463 / 1471
页数:9
相关论文
共 50 条
  • [31] Reducing the computational effort of min-max model predictive control with regional feedback laws
    Koenig, Kai
    Moennigmann, Martin
    IFAC PAPERSONLINE, 2021, 54 (06): : 58 - 63
  • [32] Min-max predictive control strategies for input-saturated polytopic uncertain systems
    Casavola, A
    Giannelli, M
    Mosca, E
    AUTOMATICA, 2000, 36 (01) : 125 - 133
  • [33] Robust dynamic programming for min-max model predictive control of constrained uncertain systems
    Diehl, M
    Björnberg, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2004, 49 (12) : 2253 - 2257
  • [34] Adaptive Scenario Subset Selection for Min-Max Black-Box Continuous Optimization
    Miyagi, Atsuhiro
    Fukuchi, Kazuto
    Sakuma, Jun
    Akimoto, Youhei
    PROCEEDINGS OF THE 2021 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'21), 2021, : 697 - 705
  • [35] Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings
    Zhao Min
    Li Ning
    Li ShaoYuan
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (07): : 1129 - 1135
  • [36] Quality-Aware Fuzzy Min-Max Neural Networks for Dynamic Brain Network Analysis
    Hou, Tao
    Huang, Jiashuang
    Jiang, Shu
    Ding, Weiping
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT II, 2024, 15002 : 356 - 366
  • [37] Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings
    Min Zhao
    Ning Li
    ShaoYuan Li
    Science in China Series F: Information Sciences, 2009, 52 : 1129 - 1135
  • [38] Generalisation of Euler-Lagrange equations to find min-max optimal solution of uncertain systems
    Dosthosseini, Rohollah
    Sheikholeslam, Farid
    INTERNATIONAL JOURNAL OF CONTROL, 2014, 87 (12) : 2535 - 2548
  • [39] Min-max regret version of a scheduling problem with outsourcing decisions under processing time uncertainty
    Choi, Byung-Cheon
    Chung, Kwanghun
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 252 (02) : 367 - 375