Application of an explicit min-max MPC to a scaled laboratory process

被引:17
作者
de la Peña, DM [1 ]
Ramírez, DR [1 ]
Camacho, EF [1 ]
Alamo, T [1 ]
机构
[1] Univ Seville, Escuela Super Ingn, Dept Ingn Sistemas & Automat, Seville 41092, Spain
关键词
predictive control; minimax techniques; multi-parametric programming; piecewise linear controllers; uncertainty;
D O I
10.1016/j.conengprac.2004.12.008
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Min-max model predictive control (MMMPC) requires the on-line solution of a min-max problem, which can be computationally demanding. The piecewise affine nature of MMMPC has been proved for linear systems with quadratic performance criterion. This paper shows how to move most computations off-line obtaining the explicit form of this control law by means of a heuristic algorithm. These results are illustrated with an application to a scaled laboratory process with dynamics fast enough to preclude the use of numerical solvers. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1463 / 1471
页数:9
相关论文
共 25 条
[1]  
ALAMO T, 2003, P 42 C DEC CONTR MAU
[2]  
[Anonymous], 2003, Model Predictive Control
[3]   A new autotuning algorithm for PID controllers using dead-beat format [J].
Bandyopadhyay, R ;
Patranabis, D .
ISA TRANSACTIONS, 2001, 40 (03) :255-266
[4]  
Bazaraa MokhtarS., 1979, Nonlinear Programming: Theory and Algorithms
[5]   The explicit linear quadratic regulator for constrained systems [J].
Bemporad, A ;
Morari, M ;
Dua, V ;
Pistikopoulos, EN .
AUTOMATICA, 2002, 38 (01) :3-20
[6]   Min-max control of constrained uncertain discrete-time linear systems [J].
Bemporad, A ;
Borrelli, F ;
Morari, M .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (09) :1600-1606
[7]  
Bemporad A, 1998, IEEE DECIS CONTR P, P1384, DOI 10.1109/CDC.1998.758479
[8]  
BEMPORAD A, 2001, P EUR CONTR C ECC 01
[9]  
BORRELLI F, 2002, THESIS SWISS FEDERAL
[10]  
Campo P. J., 1987, Proceedings of the 1987 American Control Conference, P1021