Contractions:: Nijenhuis and Saletan tensors for general algebraic structures

被引:22
作者
Cariñena, JF [1 ]
Grabowski, J
Marmo, G
机构
[1] Univ Zaragoza, Dept Fis Teor, E-50009 Zaragoza, Spain
[2] Warsaw Univ, Inst Math, PL-00950 Warsaw, Poland
[3] Polish Acad Sci, Inst Math, PL-00905 Warsaw, Poland
[4] Univ Naples Federico II, Dipartimento Sci Fis, I-80126 Naples, Italy
[5] Complesso Univ Monte St Angelo, Sezione Napoli, Ist Nazl Fis Nucl, I-80126 Naples, Italy
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 18期
关键词
D O I
10.1088/0305-4470/34/18/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study generalizations in many directions of the contraction procedure for Lie algebras introduced by Saletan, We consider products of an arbitrary nature, not necessarily Lie brackets, and we generalize to infinite dimension, considering a modification of the approach by Nijenhuis tensors to bilinear operations on sections of finite-dimensional vector bundles. We apply our general procedure to Lie algebras, Lie algebroids and Poisson brackets. We also present results on contractions of n-ary products and coproducts.
引用
收藏
页码:3769 / 3789
页数:21
相关论文
共 24 条
[1]   LIE BIALGEBRA CONTRACTIONS AND QUANTUM DEFORMATIONS OF QUASI-ORTHOGONAL ALGEBRAS [J].
BALLESTEROS, A ;
GROMOV, NA ;
HERRANZ, FJ ;
DELOLMO, MA ;
SANTANDER, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (10) :5916-5937
[2]   Quantum bi-Hamiltonian systems [J].
Cariñena, JF ;
Grabowski, J ;
Marmo, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (30) :4797-4810
[3]  
Dirac P.A.M., 1958, The Principles of Quantum Mechanics
[4]   ON A CLASS OF GENERALIZED GROUP CONTRACTIONS [J].
DOEBNER, HD ;
MELSHEIM.O .
NUOVO CIMENTO A, 1967, 49 (02) :306-+
[5]   THE LIE-ALGEBRA STRUCTURE OF DEGENERATE HAMILTONIAN AND BI-HAMILTONIAN SYSTEMS [J].
FUCHSSTEINER, B .
PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (04) :1082-1104
[6]  
GILMORE R, 1974, LIE GROUPS LIE ALGEG
[7]   Algebroids - general differential calculi on vector bundles [J].
Grabowski, J ;
Urbanski, P .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (2-3) :111-141
[8]  
Grabowski J., 1997, Reports on Mathematical Physics, V40, P195, DOI 10.1016/S0034-4877(97)85916-2
[9]   ON THE CONTRACTION OF GROUPS AND THEIR REPRESENTATIONS [J].
INONU, E ;
WIGNER, EP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1953, 39 (06) :510-524
[10]  
KERBRAT Y, 1993, CR ACAD SCI I-MATH, V317, P81