To the theory of the Dirichlet and Neumann problems for strongly elliptic systems in Lipschitz domains

被引:17
作者
Agranovich, M. S. [1 ]
机构
[1] Moscow Inst Elect & Math, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
strong ellipticity; Lipschitz domain; Dirichlet problem; Neumann problem; variational solution; potential space; Besov space; Whitney array;
D O I
10.1007/s10688-007-0023-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For strongly elliptic systems with Douglis-Nirenberg structure, we investigate the regularity of variational solutions to the Dirichlet and Neumann problems in a bounded Lipschitz domain. The solutions of the problems with homogeneous boundary conditions are originally defined in the simplest L-2-Sobolev spaces H-sigma. The regularity results are obtained in the potential spaces H-p(sigma) and Besov spaces B-p(sigma). In the case of second-order systems, the author's results obtained a year ago are strengthened. The Dirichlet problem with nonhomogeneous boundary conditions is considered with the use of Whitney arrays.
引用
收藏
页码:247 / 263
页数:17
相关论文
共 33 条
[1]   The inhomogeneous Dirichlet problem for Δ2 in Lipschitz domains [J].
Adolfsson, V ;
Pipher, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (01) :137-190
[2]   Regularity of variational solutions to linear boundary value problems in Lipschitz domains [J].
Agranovich, M. S. .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2006, 40 (04) :313-329
[3]   Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains [J].
Agranovich, MS .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (05) :847-920
[4]  
AGRANOVICH MS, 2008, IN PRESS RUSSIAN J M, V16
[5]  
[Anonymous], 1984, MATH REPORTS
[6]  
[Anonymous], 1980, INTERPOLATION THEORY
[7]  
Bergh J., 1976, INTERPOLATION SPACES
[8]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[9]   THE DIRICHLET PROBLEM FOR THE BIHARMONIC EQUATION IN A LIPSCHITZ DOMAIN [J].
DAHLBERG, BEJ ;
KENIG, CE ;
VERCHOTA, GC .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (03) :109-135
[10]   Area integral estimates for higher order elliptic equations and systems [J].
Dahlberg, BEJ ;
Kenig, CE ;
Pipher, J ;
Verchota, GC .
ANNALES DE L INSTITUT FOURIER, 1997, 47 (05) :1425-+