Reconstitution of G1 cyclin ubiquitination with complexes containing SCFGrr1 and Rbx1

被引:351
作者
Skowyra, D
Koepp, DM
Kamura, T
Conrad, MN
Conaway, RC
Conaway, JW
Elledge, SJ
Harper, JW [1 ]
机构
[1] Baylor Coll Med, Verna & Marrs McLean Dept Biochem, Houston, TX 77030 USA
[2] Baylor Coll Med, Dept Biochem, Houston, TX 77030 USA
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[4] Baylor Coll Med, Howard Hughes Med Inst, Houston, TX 77030 USA
[5] Oklahoma Med Res Fdn, Program Mol & Cell Biol, Oklahoma City, OK 73104 USA
[6] Univ Oklahoma, Hlth Sci Ctr, Dept Biochem & Mol Biol, Oklahoma City, OK 73190 USA
关键词
D O I
10.1126/science.284.5414.662
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Control of cyclin Levels is critical for proper cell cycle regulation. In yeast, the stability of the Ci,,cyclin Cln1 is controlled by phosphorylation-dependent ubiquitination. Here it is shown that this reaction can be reconstituted in vitro with an SCF E3 ubiquitin ligase complex. Phosphorylated Cln1 was ubiquitinated by SCF (Skp1Cdc53-F-box protein) complexes containing the F-box protein Grr1, Rbx1, and the E2 Cdc34. Rbx1 promotes association of Cdc34 with Cdc53 and stimulates Cdc34 auto-ubiquitination in the context of Cdc53 or SCF complexes. Rbx1, which is also a component of the von Hippe-Lindau tumor suppressor complex, may define a previously unrecognized class of E3-associated proteins.
引用
收藏
页码:662 / 665
页数:4
相关论文
共 28 条
[1]   SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box [J].
Bai, C ;
Sen, P ;
Hofmann, K ;
Ma, L ;
Goebl, M ;
Harper, JW ;
Elledge, SJ .
CELL, 1996, 86 (02) :263-274
[2]   Domains required for dimerization of yeast Rad6 ubiquitin-conjugating enzyme and Rad18 DNA binding protein [J].
Bailly, V ;
Prakash, S ;
Prakash, L .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (08) :4536-4543
[3]   Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities [J].
Bailly, V ;
Lauder, S ;
Prakash, S ;
Prakash, L .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) :23360-23365
[4]  
BANERJEE A, 1993, J BIOL CHEM, V268, P5668
[5]   G(1) CYCLIN TURNOVER AND NUTRIENT-UPTAKE ARE CONTROLLED BY A COMMON PATHWAY IN YEAST [J].
BARRAL, Y ;
JENTSCH, S ;
MANN, C .
GENES & DEVELOPMENT, 1995, 9 (04) :399-409
[6]   THE RECOGNITION COMPONENT OF THE N-END RULE PATHWAY [J].
BARTEL, B ;
WUNNING, I ;
VARSHAVSKY, A .
EMBO JOURNAL, 1990, 9 (10) :3179-3189
[7]   Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation [J].
Clurman, BE ;
Sheaff, RJ ;
Thress, K ;
Groudine, M ;
Roberts, JM .
GENES & DEVELOPMENT, 1996, 10 (16) :1979-1990
[8]   Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression [J].
Connelly, C ;
Hieter, P .
CELL, 1996, 86 (02) :275-285
[9]   UBIQUITINATION OF THE G(1) CYCLIN CLN2P BY A CDC34P-DEPENDENT PATHWAY [J].
DESHAIES, RJ ;
CHAU, V ;
KIRSCHNER, M .
EMBO JOURNAL, 1995, 14 (02) :303-312
[10]   G(1) CYCLIN-DEPENDENT ACTIVATION OF P34(CDC28) (CDC28P) IN-VITRO [J].
DESHAIES, RJ ;
KIRSCHNER, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (04) :1182-1186