WKB expansion for the angular momentum and the Kepler problem: From the torus quantization to the exact one

被引:27
作者
Robnik, M
Salasnich, L
机构
[1] UNIV PADUA, DIPARTIMENTO MATEMAT PURA & APPLICATA, I-35131 PADUA, ITALY
[2] IST NAZL FIS NUCL, I-35131 PADUA, ITALY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 05期
关键词
D O I
10.1088/0305-4470/30/5/032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate the WKB series for the angular momentum and the non-relativistic three-dimesional Kepler problem. This is the first semiclassical treatment of the angular momentum for terms beyond the leading WKB approximation. We explain why the torus quantization (the leading WKB term) of the full problem is exact, even if the individual torus quantization of the angular momentum and of the radial Kepler problem separately is not exact In this way we derive Langer's rule, calculate the first correction to the leading Langer's term and conjecture the form of all higher terms.
引用
收藏
页码:1719 / 1729
页数:11
相关论文
共 28 条
[1]   TRANSITION FROM CLASSICAL MECHANICS TO QUANTUM-MECHANICS - CHI-4 PERTURBED HARMONIC-OSCILLATOR [J].
ALVAREZ, G ;
GRAFFI, S ;
SILVERSTONE, HJ .
PHYSICAL REVIEW A, 1988, 38 (04) :1687-1696
[2]  
[Anonymous], 1995, QUANTUM CHAOS
[3]  
BARCLAY DT, 1993, UICHEPTH9316 U ILL
[4]   NUMEROLOGICAL ANALYSIS OF WKB APPROXIMATION IN LARGE ORDER [J].
BENDER, CM ;
OLAUSSEN, K ;
WANG, PS .
PHYSICAL REVIEW D, 1977, 16 (06) :1740-1748
[5]  
CUTZWILLER MC, 1990, CHAOS CLASSICAL QUAN
[6]   The Wentzel-Brillouin-Kramers method of solving the wave equation [J].
Dunham, JL .
PHYSICAL REVIEW, 1932, 41 (06) :713-720
[7]  
Einstein A, 1917, VERHAND DEUT PHYS GE, V19, P82
[8]   QUANTIZATION OF THE CLASSICAL LIE ALGORITHM IN THE BARGMANN REPRESENTATION [J].
ESPOSTI, MD ;
GRAFFI, S ;
HERCZYNSKI, J .
ANNALS OF PHYSICS, 1991, 209 (02) :364-392
[9]   H-EXPANSION FOR THE PERIODIC-ORBIT QUANTIZATION OF HYPERBOLIC SYSTEMS [J].
GASPARD, P ;
ALONSO, D .
PHYSICAL REVIEW A, 1993, 47 (05) :R3468-R3468
[10]   THE SCHRODINGER-EQUATION AND CANONICAL PERTURBATION-THEORY [J].
GRAFFI, S ;
PAUL, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :25-40