Notes on computational aspects of the fractional-order viscoelastic model

被引:15
|
作者
Niedziela, Maciej [1 ]
Wlazlo, Jaroslaw [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Podgorna 50, PL-65246 Zielona Gora, Poland
[2] Fraunhofer Inst Ind Math, Dept Transport Proc, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Fractional derivative; Fractional differential equation; Mittag-Leffler function; Viscoelasticity; FINITE VISCOELASTICITY; DERIVATIVE MODEL; MAXWELL MODEL; RELAXATION; CALCULUS; BEHAVIOR; FLUID;
D O I
10.1007/s10665-017-9911-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the computational aspect of the investigation of the relaxation properties of viscoelastic materials. The constitutive fractional Zener model is considered under continuous deformation with a jump at the origin. The analytical solution of this equation is obtained by the Laplace transform method. It is derived in a closed form in the terms of the Mittag-Leffler function. The method of numerical evaluation of the Mittag-Leffler function for arbitrary negative arguments which corresponds to physically meaningful interpretation is demonstrated. A numerical example is given to illustrate the effectiveness of this result.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [41] A modified fractional order thermo-viscoelastic theory with fractional order strain and its application in a thermo-viscoelastic problem containing a spherical cavity
    Peng, Wei
    Chen, Like
    He, Tianhu
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2022, 26 (04) : 891 - 907
  • [42] A compact fractional-order model for hypnosis in general anesthesia
    Mihai, Marcian
    Birs, Isabela
    Erwin, Hegedus
    Copot, Dana
    De Keyser, Robain
    Ionescu, Clara M.
    Muresan, Cristina I.
    Neckebroek, Martine
    IFAC PAPERSONLINE, 2024, 58 (12): : 55 - 60
  • [43] Fractional-order visco-plastic constitutive model for uniaxial ratcheting behaviors
    Zhao, Wenjie
    Yang, Shaopu
    Wen, Guilin
    Ren, Xuehong
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (01) : 49 - 62
  • [44] One-dimensional haemodynamic model of a vascular network with fractional-order viscoelasticity
    Yanbarisov, Ruslan
    Gamilov, Timur
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2023, 38 (05) : 323 - 339
  • [45] Backward Bifurcation in a Fractional-Order SIRS Epidemic Model with a Nonlinear Incidence Rate
    Yousef, A. M.
    Salman, S. M.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (7-8) : 401 - 412
  • [46] MELNIKOV ANALYSIS OF THE NONLOCAL NANOBEAM RESTING ON FRACTIONAL-ORDER SOFTENING NONLINEAR VISCOELASTIC FOUNDATIONS
    Eyebe, Guy Joseph
    Gambo, Betchewe
    Mohamadou, Alidou
    Kofane, Timoleon Crepin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2213 - 2228
  • [47] Settlement Analysis of Fractional-Order Generalised Kelvin Viscoelastic Foundation under Distributed Loads
    Huang, Bingcheng
    Lu, Aizhong
    Zhang, Ning
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [48] Reflection, transmission and energy ratio characteristics of elastic waves in fractional-order viscoelastic nanoplates
    Yang, Chuang
    Yu, Jiangong
    Liu, Cancan
    Elmaimouni, Lahoucine
    ACTA MECHANICA, 2025, 236 (03) : 1863 - 1882
  • [49] New Fractional Calculus and Application to the Fractional-order of Extended Biological Population Model
    Neirameh, Ahmad
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (03): : 115 - 128
  • [50] Free energy and states of fractional-order hereditariness
    Deseri, Luca
    Di Paola, Mario
    Zingales, Massimiliano
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2014, 51 (18) : 3156 - 3167