Notes on computational aspects of the fractional-order viscoelastic model

被引:15
|
作者
Niedziela, Maciej [1 ]
Wlazlo, Jaroslaw [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Podgorna 50, PL-65246 Zielona Gora, Poland
[2] Fraunhofer Inst Ind Math, Dept Transport Proc, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Fractional derivative; Fractional differential equation; Mittag-Leffler function; Viscoelasticity; FINITE VISCOELASTICITY; DERIVATIVE MODEL; MAXWELL MODEL; RELAXATION; CALCULUS; BEHAVIOR; FLUID;
D O I
10.1007/s10665-017-9911-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the computational aspect of the investigation of the relaxation properties of viscoelastic materials. The constitutive fractional Zener model is considered under continuous deformation with a jump at the origin. The analytical solution of this equation is obtained by the Laplace transform method. It is derived in a closed form in the terms of the Mittag-Leffler function. The method of numerical evaluation of the Mittag-Leffler function for arbitrary negative arguments which corresponds to physically meaningful interpretation is demonstrated. A numerical example is given to illustrate the effectiveness of this result.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [31] GEOMETRIC INTERPRETATION OF FRACTIONAL-ORDER DERIVATIVE
    Tarasov, Vasily E.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (05) : 1200 - 1221
  • [32] Variational fractional-order modeling of viscoelastic axially moving plates and vibration simulation
    Qu, Jingguo
    Zhang, Qunwei
    Yang, Aimin
    Chen, Yiming
    Zhang, Qi
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [33] Fractional Order Viscoelastic Model for Stress Relaxation of Polyvinyl Chloride Geomembranes
    Wu, Yunyun
    Yin, Chunjie
    Zhang, Xianlei
    Gu, Xiaoyu
    APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [34] Implementation of fractional-order transfer functions in the viewpoint of the required fractional-order capacitors
    Tavakoli-Kakhki, Mahsan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (01) : 63 - 73
  • [35] Identification using Fractional-order Model: An Application Overview
    Ishak, Norlela
    Yusof, Nuzaihan Mhd.
    Rahiman, Mohd. Hezri Fazalul
    Adnan, Ramli
    Tajudin, Mazidah
    2014 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM COMPUTING AND ENGINEERING, 2014, : 668 - 673
  • [36] Exact Solutions of Fractional-Order Biological Population Model
    El-Sayed, A. M. A.
    Rida, S. Z.
    Arafa, A. A. M.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2009, 52 (06) : 992 - 996
  • [37] A Modified Fractional-Order Unscented Kalman Filter for Nonlinear Fractional-Order Systems
    Ramezani, Abdolrahman
    Safarinejadian, Behrouz
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2018, 37 (09) : 3756 - 3784
  • [38] Dynamical analysis of fractional-order modified logistic model
    Abbas, Syed
    Banerjee, Malay
    Momani, Shaher
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1098 - 1104
  • [39] Study of a fractional-order model of chronic wasting disease
    Maji, Chandan
    Mukherjee, Debasis
    Kesh, Dipak
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4669 - 4682
  • [40] Exact Solutions of Fractional-Order Biological Population Model
    A.M.A.El-Sayed
    S.Z.Rida
    A.A.M.Arafa
    CommunicationsinTheoreticalPhysics, 2009, 52 (12) : 992 - 996