Notes on computational aspects of the fractional-order viscoelastic model

被引:15
|
作者
Niedziela, Maciej [1 ]
Wlazlo, Jaroslaw [2 ]
机构
[1] Univ Zielona Gora, Fac Math Comp Sci & Econometr, Podgorna 50, PL-65246 Zielona Gora, Poland
[2] Fraunhofer Inst Ind Math, Dept Transport Proc, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
关键词
Fractional derivative; Fractional differential equation; Mittag-Leffler function; Viscoelasticity; FINITE VISCOELASTICITY; DERIVATIVE MODEL; MAXWELL MODEL; RELAXATION; CALCULUS; BEHAVIOR; FLUID;
D O I
10.1007/s10665-017-9911-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with the computational aspect of the investigation of the relaxation properties of viscoelastic materials. The constitutive fractional Zener model is considered under continuous deformation with a jump at the origin. The analytical solution of this equation is obtained by the Laplace transform method. It is derived in a closed form in the terms of the Mittag-Leffler function. The method of numerical evaluation of the Mittag-Leffler function for arbitrary negative arguments which corresponds to physically meaningful interpretation is demonstrated. A numerical example is given to illustrate the effectiveness of this result.
引用
收藏
页码:91 / 105
页数:15
相关论文
共 50 条
  • [1] Notes on computational aspects of the fractional-order viscoelastic model
    Maciej Niedziela
    Jarosław Wlazło
    Journal of Engineering Mathematics, 2018, 108 : 91 - 105
  • [2] A fractional-order model on new experiments of linear viscoelastic creep of Hami Melon
    Xu, Zheng
    Chen, Wen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (05) : 677 - 681
  • [3] Fractional-order viscoelastic model of musculoskeletal tissues: correlation with fractals
    Guo, Jianqiao
    Yin, Yajun
    Peng, Gang
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2249):
  • [4] Extended Fractional-Order Jeffreys Model of Viscoelastic Hydraulic Cylinder
    Ruderman, Michael
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2021, 143 (07):
  • [5] A fractional-order Maxwell model for non-Newtonian fluids
    Carrera, Y.
    Avila-de la Rosa, G.
    Vernon-Carter, E. J.
    Alvarez-Ramirez, J.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 482 : 276 - 285
  • [6] Differential geometry of viscoelastic models with fractional-order derivatives
    Yajima, Takahiro
    Nagahama, Hiroyuki
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
  • [7] Fractional-order derivative and time-dependent viscoelastic behaviour of rocks and minerals
    Kawada, Yusuke
    Yajima, Takahiro
    Nagahama, Hiroyuki
    ACTA GEOPHYSICA, 2013, 61 (06) : 1690 - 1702
  • [8] An investigation of the effect of relative humidity on viscoelastic properties of flax fiber reinforced polymer by fractional-order viscoelastic model
    Xu, Bowen
    Blok, Rijk
    Teuffel, Patrick
    COMPOSITES COMMUNICATIONS, 2023, 37
  • [9] Rheological analysis of the general fractional-order viscoelastic model involving the Miller-Ross kernel
    Feng, Yi-Ying
    Yang, Xiao-Jun
    Liu, Jian-Gen
    Chen, Zhan-Qing
    ACTA MECHANICA, 2021, 232 (08) : 3141 - 3148
  • [10] Fractional-order viscoelastic modeling of the magnetic field dependent transmissibility response of MRE isolator
    Kiran, Katari
    Poojary, Umanath R.
    Gangadharan, K., V
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2022, 33 (18) : 2373 - 2388