Longitudinal deep learning clustering of Type 2 Diabetes Mellitus trajectories using routinely collected health records

被引:6
作者
Manzini, Enrico [1 ,2 ,3 ]
Vlacho, Bogdan [4 ]
Franch-Nadal, Josep [4 ,5 ,6 ]
Escudero, Joan [7 ]
Genova, Ana [7 ]
Reixach, Elisenda [8 ]
Andres, Erik [8 ]
Pizarro, Israel [9 ]
Portero, Jose-Luis [9 ]
Mauricio, Didac [4 ,5 ,10 ]
Perera-Lluna, Alexandre [1 ,2 ,3 ]
机构
[1] Univ Politecn Cataluna, Barcelona, Spain
[2] Networking Biomed Res Ctr Subject Area Bioengn Bi, Madrid, Spain
[3] Inst Recerca St Joan de Deu, Barcelona, Spain
[4] Fundacio Inst Univ Recerca Atencio Primdria, DAP Cat Grp, Unitat Suport Recerca, Barelona, Spain
[5] Inst Salud Carlos III, Ctr Biomed Res Diabet & Associated Metab Dis CIBE, Madrid 28029, Spain
[6] Inst Catala Salut, Primary Hlth Care Ctr Raval Sud, Barcelona, Spain
[7] Grp Pulso, Barcelona, Spain
[8] Fundacio TIC Salut Social, Dept Salut Generalitat Catalunya, Barcelona, Spain
[9] Novo Nordisk, Madrid, Spain
[10] Univ Vic Cent Univ Catalonia, Dept Med, Vic, Spain
基金
欧盟地平线“2020”;
关键词
Type; 2; diabetes; Deep learning; Longitudinal cluster; AutoEncoder; Diabetic complications; Electronic health records; EUROPEAN ASSOCIATION; PRECISION MEDICINE; CONSENSUS REPORT; ADA;
D O I
10.1016/j.jbi.2022.104218
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Type 2 diabetes mellitus (T2DM) is a highly heterogeneous chronic disease with different pathophysiological and genetic characteristics affecting its progression, associated complications and response to therapies. The advances in deep learning (DL) techniques and the availability of a large amount of healthcare data allow us to investigate T2DM characteristics and evolution with a completely new approach, studying common disease trajectories rather than cross sectional values. We used an Kernelized-AutoEncoder algorithm to map 5 years of data of 11,028 subjects diagnosed with T2DM in a latent space that embedded similarities and differences between patients in terms of the evolution of the disease. Once we obtained the latent space, we used classical clustering algorithms to create longitudinal clusters representing different evolutions of the diabetic disease. Our unsupervised DL clustering algorithm suggested seven different longitudinal clusters. Different mean ages were observed among the clusters (ranging from 65.3 +/- 11.6 to 72.8 +/- 9.4). Subjects in clusters B (Hypercholesteraemic) and E (Hypertensive) had shorter diabetes duration (9.2 +/- 3.9 and 9.5 +/- 3.9 years respectively). Subjects in Cluster G (Metabolic) had the poorest glycaemic control (mean glycated hemoglobin 7.99 +/- 1.42%), while cluster E had the best one (mean glycated hemoglobin 7.04 +/- 1.11%). Obesity was observed mainly in clusters A (Neuropathic), C (Multiple Complications), F (Retinopathy) and G. A dashboard is available at dm2.b2slab.upc.edu to visualize the different trajectories corresponding to the 7 clusters.
引用
收藏
页数:9
相关论文
共 40 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables
    Ahlqvist, Emma
    Storm, Petter
    Karajamaki, Annemari
    Martinell, Mats
    Dorkhan, Mozhgan
    Carlsson, Annelie
    Vikman, Petter
    Prasad, Rashmi B.
    Aly, Dina Mansour
    Almgren, Peter
    Wessman, Ylva
    Shaat, Nael
    Spegel, Peter
    Mulder, Hindrik
    Lindholm, Eero
    Melander, Olle
    Hansson, Ola
    Malmqvist, Ulf
    Lernmark, Ake
    Lahti, Kaj
    Forsen, Tom
    Tuomi, Tiinamaija
    Rosengren, Anders H.
    Groop, Leif
    [J]. LANCET DIABETES & ENDOCRINOLOGY, 2018, 6 (05) : 361 - 369
  • [3] [Anonymous], 2021, ATC CLASS IND DDDS
  • [4] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [5] Learning representations of multivariate time series with missing data
    Bianchi, Filippo Maria
    Livi, Lorenzo
    Mikalsen, Karl Oyvind
    Kampffmeyer, Michael
    Jenssen, Robert
    [J]. PATTERN RECOGNITION, 2019, 96
  • [6] The European Medicines Agency's approval of new medicines for type 2 diabetes
    Blind, Eberhard
    Janssen, Heidi
    Dunder, Kristina
    de Graeff, Pieter A.
    [J]. DIABETES OBESITY & METABOLISM, 2018, 20 (09) : 2059 - 2063
  • [7] SIDIAP database: electronic clinical records in Primary Care as a source of information for epidemiologic research
    Bolibar, Bonaventura
    Fina Aviles, Francesc
    Morros, Rosa
    del Mar Garcia-Gil, Maria
    Hermosilla, Eduard
    Ramos, Rafael
    Rosell, Magdalena
    Rodriguez, Jordi
    Medina, Manuel
    Calero, Sebastian
    Prieto-Alhambra, Daniel
    [J]. MEDICINA CLINICA, 2012, 138 (14): : 617 - 621
  • [8] Clustering for a better prediction of type 2 diabetes mellitus
    Bonnefond, Amelie
    Froguel, Philippe
    [J]. NATURE REVIEWS ENDOCRINOLOGY, 2021, 17 (04) : 193 - 194
  • [9] BRAMER G R, 1988, World Health Statistics Quarterly, V41, P32
  • [10] 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD)
    Buse, John B.
    Wexler, Deborah J.
    Tsapas, Apostolos
    Rossing, Peter
    Mingrone, Geltrude
    Mathieu, Chantal
    D'Alessio, David A.
    Davies, Melanie J.
    [J]. DIABETES CARE, 2020, 43 (02) : 487 - 493