Non-commutative Hyper Residuated Lattices and Hyper Pseudo-BCK algebras

被引:0
作者
Zhang, Xiaohong [1 ]
Zhan, Qiuyan [1 ]
Wang, Xueping [2 ]
机构
[1] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
[2] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610066, Sichuan Provinc, Peoples R China
来源
2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD) | 2016年
关键词
fuzzy logic; residuated lattice; non-commutative hyper residuated lattice; hyper pseudo-BCK algebra; weak hyper pseudo-BCK algebra;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The new notion of non-commutative hyper residuated lattice is introduced and some properties are investigated. Moreover, two definitions of hyper pseudo-BCK algebras are discussed, and the following result is proved: every strong non-commuatative hyper residuated lattice can induce a weak hyper pseudo-BCK algebra. Finally, some mistakes in literatures are pointed out.
引用
收藏
页码:2277 / 2282
页数:6
相关论文
共 43 条
[1]   Smarandache hyper BCC-algebra [J].
Ahadpanah, A. ;
Saeid, A. Borumand .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (09) :2490-2497
[2]  
[Anonymous], 2011, Handbook of Mathematical Fuzzy Logic
[3]  
[Anonymous], 2000, MATH JAPONICA
[4]   On Hyper Pseudo BCK-algebras [J].
Borzooei, R. A. ;
Rezazadeh, A. ;
Ameri, R. .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2014, 9 (01) :13-29
[5]  
Borzooei R. A., 2013, QUASIGROUPS RELATED, V21, P29
[6]  
Borzooei R.A., 2014, Quasigroups and Related Systems, V22, P33
[7]  
Borzooei R. A., 2012, ITALIAN J PURE APPL, V12, P175
[8]  
Borzooei R.A., 2006, International Journal of Mathematics and Mathematical Sciences
[9]  
Cintula P., 2011, Handbook of Mathematical Fuzzy Logic, V2
[10]  
Corsini P., 2003, Advances in Mathematics