Nordhaus-Gaddum-type theorems for decompositions into many parts

被引:17
作者
Füredi, Z
Kostochka, AV
Skrekovski, R
Stiebitz, M
West, DB
机构
[1] Univ Illinois, Urbana, IL 61801 USA
[2] Renyi Inst Math, H-1364 Budapest, Hungary
[3] Russian Acad Sci, Inst Math, Novosibirsk 630090, Russia
[4] Charles Univ Prague, CR-18000 Prague, Czech Republic
[5] Univ Ljubljana, Ljubljana 1111, Slovenia
[6] Tech Univ Ilmenau, D-98693 Ilmenau, Germany
关键词
graph decomposition; Nordhaus-Gaddum Theorem; chromatic number; coloring number; list chromatic number; surface embedding;
D O I
10.1002/jgt.20113
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A k-decomposition (G(1),...,G(k)) of a graph G is a partition of its edge set to form k spanning subgraphs G(1),...,G(k). The classical theorem of Nordhaus and Gaddum bounds chi(G(1)) + chi(G(2)) and chi(G(1))chi(G(2)) over all 2-decompositions of K, For a graph parameter p, let p(k;G) denote the maximum of Sigma(k)(i=1) p(G(i)) over all k-decompositions of the graph G. The clique number omega, chromatic number chi, list chromatic number chi(l), and Szekeres-Wilf number sigma satisfy omega(2;K-n) = chi(2;K-n) = X-l(2;K-n) = sigma(2;K-n) = n + 1. We obtain lower and upper bounds for omega(k;K-n), chi(k;K-n), chi(l)(k;K-n), and alpha(k;K-n). The last three behave differently for large k. We also obtain lower and upper bounds for the maximum of X(k; G) over all graphs embedded on a given surface. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:273 / 292
页数:20
相关论文
共 24 条
[1]  
Albertson M.O., 1979, ANN NY ACAD SCI, V319, P7, DOI 10.1111/j.1749-6632.1979.tb32768.x.MR556001
[2]  
Alon N., 1992, COMB PROBAB COMPUT, V1, P107, DOI DOI 10.1017/S0963548300000122
[3]  
[Anonymous], 1974, MAP COLOR THEOREM, DOI DOI 10.1007/978-3-642-65759-7
[4]  
BOSAK J, 1990, DECOMPOSITIONS GRAPH, V47
[5]  
Diestel R., 1997, Graph Theory
[6]  
Dirac G. A., 1956, J LOND MATH SOC, V31, P460, DOI DOI 10.1112/JLMS/S1-31.4.460
[7]  
Erd o P., 1979, Congr. Numer., V26, P125
[8]   ON CHROMATIC NUMBER OF GRAPHS AND SET-SYSTEMS [J].
ERDOS, P ;
HAJNAL, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1966, 17 (1-2) :61-&
[9]  
FINCK HJ, 1966, WISS Z TECHN HOCHSCH, V12, P243
[10]  
Franklin P., 1934, J MATH PHYS, V13, P363, DOI DOI 10.1002/SAPM1934131363.ZBL10.27502