Analogy Between Conventional Grid Control and Islanded Microgrid Control Based on a Global DC-Link Voltage Droop

被引:112
作者
Vandoorn, Tine L. [1 ]
Meersman, Bart [1 ]
De Kooning, Jeroen D. M. [1 ]
Vandevelde, Lieven [1 ]
机构
[1] Univ Ghent, Dept Elect Energy Syst & Automat, B-9000 Ghent, Belgium
关键词
Conventional grid control; distributed generation; droop control; microgrid; voltage-source inverter; DISTRIBUTED-GENERATION; PARALLEL INVERTERS; POWER-SYSTEMS; IMPEDANCE; OPERATION; DESIGN;
D O I
10.1109/TPWRD.2012.2193904
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For islanded microgrids, droop-based control methods are often used to achieve a reliable energy supply. However, in case of resistive microgrids, these control strategies can be rather different to what conventional grid control is accustomed to. Therefore, in this paper, the theoretical analogy between conventional grid control by means of synchronous generators (SGs) and the control of converter-interfaced distributed generation (CIDG) units in microgrids is studied. The conventional grid control is based on the frequency as a global parameter showing differences between mechanical power and ac power. The SGs act on changes of frequency through their P/f droop controller, without interunit communication. For CIDG units, a difference between dc-side power and ac-side power is visible in the dc-link voltage of each unit. Opposed to grid frequency, this is not a global parameter. Thus, in order to make a theoretical analogy, a global measure of the dc-link voltages is required. A control strategy based on this global voltage is presented and the analogy with the conventional grid control is studied, with the emphasis on the need for interunit communication to achieve this analogy. A known control strategy in resistive microgrids, called the voltage-based droop control for CIDG units, approximates this analogy closely, but avoids interunit communication. Therefore, this control strategy is straightforward for implementation since it is close to what control engineers are used to. Also, it has some specific advantages for the integration of renewables in the network.
引用
收藏
页码:1405 / 1414
页数:10
相关论文
共 30 条
[1]   Multimode Control of a DFIG-Based Wind-Power Unit for Remote Applications [J].
Bhuiyan, Faruk A. ;
Yazdani, Amirnaser .
IEEE TRANSACTIONS ON POWER DELIVERY, 2009, 24 (04) :2079-2089
[2]  
Bollen M., 2009, IEEE POW TECH C BUCH
[3]   CONTROL OF PARALLEL CONNECTED INVERTERS IN STANDALONE AC SUPPLY-SYSTEMS [J].
CHANDORKAR, MC ;
DIVAN, DM ;
ADAPA, R .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1993, 29 (01) :136-143
[4]   A voltage and frequency droop control method for parallel inverters [J].
De Brabandere, Karel ;
Bolsens, Bruno ;
Van den Keybus, Jeroen ;
Woyte, Achim ;
Driesen, Johan ;
Belmans, Ronnie .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2007, 22 (04) :1107-1115
[5]  
ENGLER A, 2005, DER J
[6]  
Engler A., 2004, EUR COMM FEB
[7]  
Engler A., 2005, INT C FUT POW SYST N
[8]  
Engler A., 2005, DB2 EVALUATION LOCAL
[9]   Control of inverter-based micro-grids [J].
Green, T. C. ;
Prodanovic, M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (09) :1204-1213
[10]   Output impendance design of parallel-connected UPS inverters with wireless load-sharing control [J].
Guerrero, JM ;
de Vicuña, LG ;
Matas, J ;
Castilla, M ;
Miret, J .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2005, 52 (04) :1126-1135