Hodge theory is a beautiful synthesis of geometry, topology, and analysis which has been developed in the setting of Riemannian manifolds. However, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step toward understanding the geometry of vision. Appendix B by Anthony Baker discusses a separable, compact metric space with infinite-dimensional alpha-scale homology.
机构:
Univ Calif Los Angeles, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Los Angeles, CA 90024 USA
Green, Mark
Griffiths, Phillip
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miami, Inst Adv Study & Arts, Math, Coral Gables, FL 33124 USA
Univ Miami, Coral Gables, FL 33124 USAUniv Calif Los Angeles, Los Angeles, CA 90024 USA
机构:
Univ Calif Los Angeles, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Los Angeles, CA 90024 USA
Green, Mark
Griffiths, Phillip
论文数: 0引用数: 0
h-index: 0
机构:
Univ Miami, Inst Adv Study & Arts, Math, Coral Gables, FL 33124 USA
Univ Miami, Coral Gables, FL 33124 USAUniv Calif Los Angeles, Los Angeles, CA 90024 USA