Hodge Theory on Metric Spaces

被引:16
|
作者
Bartholdi, Laurent [1 ]
Schick, Thomas [1 ]
Smale, Nat [2 ]
Smale, Steve [3 ]
机构
[1] Univ Gottingen, Gottingen, Germany
[2] Univ Utah, Salt Lake City, UT USA
[3] City Univ Hong Kong, Pokfulam, Peoples R China
关键词
Hodge theory; L-2; cohomology; Metric spaces; Harmonic forms; Medium-scale geometry; L2-COHOMOLOGY;
D O I
10.1007/s10208-011-9107-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Hodge theory is a beautiful synthesis of geometry, topology, and analysis which has been developed in the setting of Riemannian manifolds. However, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step toward understanding the geometry of vision. Appendix B by Anthony Baker discusses a separable, compact metric space with infinite-dimensional alpha-scale homology.
引用
收藏
页码:1 / 48
页数:48
相关论文
共 50 条
  • [1] Hodge Theory on Metric Spaces
    Laurent Bartholdi
    Thomas Schick
    Nat Smale
    Steve Smale
    Foundations of Computational Mathematics, 2012, 12 : 1 - 48
  • [2] Hodge theory on Cheeger spaces
    Albin, Pierre
    Leichtnam, Eric
    Mazzeo, Rafe
    Piazza, Paolo
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 744 : 29 - 102
  • [3] Spectral and Hodge theory of "Witt" incomplete cusp edge spaces
    Gell-Redman, Jesse
    Swoboda, Jan
    COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (04) : 701 - 765
  • [4] A Theory for Interpolation of Metric Spaces
    Sette, Robledo Mak's Miranda
    Fernandez, Dicesar Lass
    da Silva, Eduardo Brandani
    AXIOMS, 2024, 13 (07)
  • [5] A Hodge theory for Alexandrov spaces with curvature bounded from above
    Smale, Nat
    ANALYSIS AND APPLICATIONS, 2015, 13 (03) : 291 - 301
  • [6] Hodge theory of SKT manifolds
    Cavalcanti, Gil R.
    ADVANCES IN MATHEMATICS, 2020, 374
  • [7] The Metric Dimension of Metric Spaces
    Bau, Sheng
    Beardon, Alan F.
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2013, 13 (02) : 295 - 305
  • [8] The Metric Dimension of Metric Spaces
    Sheng Bau
    Alan F. Beardon
    Computational Methods and Function Theory, 2013, 13 : 295 - 305
  • [9] Ultrametricity and Metric Betweenness in Tangent Spaces to Metric Spaces
    Dovgoshey, Oleksiy
    Dordovskyi, Dmytro
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2010, 2 (02) : 100 - 113
  • [10] Trading networks and Hodge theory*
    Schenck, Henry
    Sowers, Richard
    Song, Rui
    JOURNAL OF PHYSICS COMMUNICATIONS, 2021, 5 (01): : 1 - 20