Hodge theory is a beautiful synthesis of geometry, topology, and analysis which has been developed in the setting of Riemannian manifolds. However, spaces of images, which are important in the mathematical foundations of vision and pattern recognition, do not fit this framework. This motivates us to develop a version of Hodge theory on metric spaces with a probability measure. We believe that this constitutes a step toward understanding the geometry of vision. Appendix B by Anthony Baker discusses a separable, compact metric space with infinite-dimensional alpha-scale homology.
机构:
Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USAUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Albin, Pierre
Leichtnam, Eric
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Diderot, Inst Math Jussieu PRG, 5 Rue Thomas Mann, F-75205 Paris 13, FranceUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Leichtnam, Eric
Mazzeo, Rafe
论文数: 0引用数: 0
h-index: 0
机构:
Stanford Univ, Dept Math, Sloan Hall Bldg 380, Stanford, CA 94305 USAUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Mazzeo, Rafe
Piazza, Paolo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Matemat Guido Castelnuovo, Piazzale Aldo Moro 5, I-00185 Rome, ItalyUniv Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
Piazza, Paolo
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2018,
744
: 29
-
102