Remarks on endomorphisms and rational points

被引:21
作者
Amerik, E. [1 ]
Bogomolov, F. [2 ,3 ]
Rovinsky, M. [4 ,5 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] GU HSE, Lab Algebra Geometry, Moscow 117312, Russia
[4] Independent Univ Moscow, Moscow 119002, Russia
[5] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 117901, Russia
关键词
rational points; rational maps; p-adic neighbourhood; FIBRATIONS; VARIETY; LINES;
D O I
10.1112/S0010437X11005537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be an algebraic variety and let f : X -> X be a rational self-map with a fixed point q, where everything is defined over a number field K. We make some general remarks concerning the possibility of using the behaviour of f near q to produce many rational points on X. As an application, we give a simplified proof of the potential density of rational points on the variety of lines of a cubic fourfold, originally proved by Claire Voisin and the first author in 2007.
引用
收藏
页码:1819 / 1842
页数:24
相关论文
共 30 条
  • [1] AMERIK E, 2009, ANN FAC SCI TOULOUSE, V18, P445
  • [2] Amerik E, 2008, PURE APPL MATH Q, V4, P509
  • [3] POTENTIAL DENSITY OF RATIONAL POINTS ON THE VARIETY OF LINES OF A CUBIC FOURFOLD
    Amerik, Ekaterina
    Voisin, Claire
    [J]. DUKE MATHEMATICAL JOURNAL, 2008, 145 (02) : 379 - 408
  • [4] Arnold V.I., 1988, GRUNDLEHREN MATH WIS, V250
  • [5] Atiyah M. F., 1969, Introduction to Commutative Algebra
  • [6] BEAUVILLE A, 1985, CR ACAD SCI I-MATH, V301, P703
  • [7] Beauville A., 1983, Progr. Math., V39, P1
  • [8] Bogomolov F. A., 2000, ASIAN J MATH, V4, P351, DOI 10.4310/AJM.2000.v4.n2.a6
  • [9] Campana F, 2004, ANN I FOURIER, V54, P499, DOI 10.5802/aif.2027
  • [10] Chen X., ARXIVMATH10081619