MnO2 depositing on the surface of hollow porous carbon microspheres for supercapacitor application

被引:9
作者
Liu, Jiangtao [1 ,2 ]
Zhang, Shaohui [3 ]
Liu, Baosheng [3 ]
Feng, Xuning [4 ]
Wang, Zhenbo [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, 92 West Da Zhi St, Harbin 150001, Peoples R China
[2] Gui Zhou Mei Ling Power Soures Co Ltd, 705 Zhonghua North Rd, Zunyi 563003, Guizhou, Peoples R China
[3] Guangxi Univ Sci & Technol, China Mat Sci & Engn Res Ctr, 268 Dong Huan Rd, Liuzhou 545006, Guangxi, Peoples R China
[4] South North Water Divers Middle Route Informat Te, 22 Rong Hua Rd, Beijing 100011, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Supercapacitor; Hollow carbon sphere; MnO2; coating; Electrochemical performance;
D O I
10.1016/j.ceramint.2021.12.264
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A supercapacitor electrode material was synthesized by using hollow carbon spheres prepared via high temperature sintering of dopamine hydrochloride and subsequent coating with MnO2. SEM, TEM and analysis of energy pattern were used to characterize the structure, morphology and elemental composition of the material, which proved that the material had a good hollow structure and uniform surface morphology, and that MnO2 was successfully coated on the surface of the carbon material. Electrochemical characterization using charge-discharge cycles at constant current and other methods show that the prepared materials have good specific capacitance and cycle stability, and have a specific capacitance of 198 F.g(-1) at a current of 1 A.g(-1). When the charge and discharge cycle is carried out at 10 A.g(-1) for 5000 cycles, the capacitance remains stable at more than 180 F.g(-1).
引用
收藏
页码:10533 / 10538
页数:6
相关论文
共 19 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Electrode optimisation for carbon power supercapacitors [J].
Bonnefoi, L ;
Simon, P ;
Fauvarque, JF ;
Sarrazin, C ;
Dugast, A .
JOURNAL OF POWER SOURCES, 1999, 79 (01) :37-42
[3]   Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes [J].
Cao, Chang-Yan ;
Guo, Wei ;
Cui, Zhi-Min ;
Song, Wei-Guo ;
Cai, Wei .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) :3204-3209
[4]   Supercapacitor electrodes from multiwalled carbon nanotubes [J].
Frackowiak, E ;
Metenier, K ;
Bertagna, V ;
Beguin, F .
APPLIED PHYSICS LETTERS, 2000, 77 (15) :2421-2423
[5]   Carbon materials for supercapacitor application [J].
Frackowiak, Elzbieta .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2007, 9 (15) :1774-1785
[6]   Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries [J].
Islam, Saiful ;
Alfaruqi, Muhammad Hilmy ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Kim, Seokhun ;
Jo, Jeonggeun ;
Baboo, Joseph Paul ;
Pham, Duong Tung ;
Putro, Dimas Yunianto ;
Sun, Yang-Kook ;
Kim, Jaekook .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (44) :23299-23309
[7]   Electrochemical supercapacitor material based on manganese oxide: preparation and characterization [J].
Jiang, JH ;
Kucernak, A .
ELECTROCHIMICA ACTA, 2002, 47 (15) :2381-2386
[8]   MnO2 particles grown on the surface of N-doped hollow porous carbon nanospheres for aqueous rechargeable zinc ion batteries [J].
Li, Dong-Shuai ;
Gao, Qing-Li ;
Zhang, Hui ;
Wang, Yi-Fan ;
Liu, Wei-Liang ;
Ren, Man-Man ;
Kong, Fan-Gong ;
Wang, Shou-Juan ;
Chang, Jin .
APPLIED SURFACE SCIENCE, 2020, 510
[9]   Adapting a Kinetics-Enhanced Carbon Nanostructure to Li/Na Hybrid Water-in-Salt Electrolyte for High-Energy Aqueous Supercapacitors [J].
Long, Cheng ;
Miao, Ling ;
Zhu, Dazhang ;
Duan, Hui ;
Lv, Yaokang ;
Li, Liangchun ;
Liu, Mingxian ;
Gan, Lihua .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (06) :5727-5737
[10]   Ultralayered Co3O4 for High-Performance Supercapacitor Applications [J].
Meher, Sumanta Kumar ;
Rao, G. Ranga .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31) :15646-15654