Graphene materials-based chemiluminescence for sensing

被引:61
作者
Chen, Hui [1 ]
Gao, Qiang [1 ]
Li, Jianzhang [1 ]
Lin, Jin-Ming [2 ]
机构
[1] Beijing Forestry Univ, MOE Key Lab Wooden Mat Sci & Applicat, Beijing 100083, Peoples R China
[2] Tsinghua Univ, Beijing Key Lab Microanalyt Methods & Instrumenta, Dept Chem, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金; 北京市自然科学基金;
关键词
Chemiluminescence; Graphene; Resonance energy transfer; Luminescence quenching; Catalyst; RESONANCE ENERGY-TRANSFER; MOLECULARLY IMPRINTED POLYMERS; QUANTUM DOTS; SIGNAL AMPLIFICATION; BIOSENSING PLATFORM; LABEL-FREE; OXIDE; LUMINOL; SENSOR; DNA;
D O I
10.1016/j.jphotochemrev.2016.04.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene has attracted considerable attention in multidisciplinary research fields and shown various promising applications due to its unique structure and extraordinary physicochemical properties. This review covers the latest advances in graphene materials-based chemiluminescence (CL) for sensing. Chemiluminescence resonance energy transfer and luminescence quenching of graphene materials are discussed. Graphene materials, such as graphene nanosheets, graphene quantum dots, graphene oxide, and reduced graphene oxide have been employed successfully in CL systems in recent years. Graphene materials can be utilized as catalysts, platforms, and energy acceptors to improve the performance of CL. Possible challenges and future perspective on this topic are also presented. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 71
页数:18
相关论文
共 93 条
[1]   Utilizing of Ag@AgCl@graphene oxide@Fe3O4 nanocomposite as a magnetic plasmonic nanophotocatalyst in light-initiated H2O2 generation and chemiluminescence detection of nitrite [J].
Abdolmohammad-Zadeh, Hossein ;
Rahimpour, Elaheh .
TALANTA, 2015, 144 :769-777
[2]   Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots [J].
Al-Ogaidi, Israa ;
Gou, Honglei ;
Aguilar, Zoraida P. ;
Guo, Shouwu ;
Melconian, Alice K. ;
Al-Kazaz, Abdul Kareem A. ;
Meng, Fanke ;
Wu, Nianqiang .
CHEMICAL COMMUNICATIONS, 2014, 50 (11) :1344-1346
[3]   Development of a Plasma-Assisted Cataluminescence System for Benzene, Toluene, Ethylbenzene, and Xylenes Analysis [J].
Almasian, Mohammad Reza ;
Na, Na ;
Wen, Fang ;
Zhang, Sichun ;
Zhang, Xinrong .
ANALYTICAL CHEMISTRY, 2010, 82 (09) :3457-3459
[4]   Chemiluminescence of graphene quantum dots and its application to the determination of uric acid [J].
Amjadi, Mohammad ;
Manzoori, Jamshid L. ;
Hallaj, Tooba .
JOURNAL OF LUMINESCENCE, 2014, 153 :73-78
[5]  
Andrews D. L., 2009, ENCY APPL PHYS
[6]   Ballistic Transport Exceeding 28 μm in CVD Grown Graphene [J].
Banszerus, Luca ;
Schmitz, Michael ;
Engels, Stephan ;
Goldsche, Matthias ;
Watanabe, Kenji ;
Taniguch, Takashi ;
Beschoten, Bernd ;
Stampfer, Christoph .
NANO LETTERS, 2016, 16 (02) :1387-1391
[7]   A hot-spot-active magnetic graphene oxide substrate for microRNA detection based on cascaded chemiluminescence resonance energy transfer [J].
Bi, Sai ;
Chen, Min ;
Jia, Xiaoqiang ;
Dong, Ying .
NANOSCALE, 2015, 7 (08) :3745-3753
[8]   A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer [J].
Bi, Sai ;
Zhao, Tingting ;
Luo, Baoyu .
CHEMICAL COMMUNICATIONS, 2012, 48 (01) :106-108
[9]   CHEMILUMINESCENCE DURING CATALYSIS OF CARBON-MONOXIDE OXIDATION ON A THORIA SURFACE [J].
BREYSSE, M ;
CLAUDEL, B ;
FAURE, L ;
GUENIN, M ;
WILLIAMS, RJJ ;
WOLKENSTEIN, T .
JOURNAL OF CATALYSIS, 1976, 45 (02) :137-144
[10]   Graphene-Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications [J].
Chang, Haixin ;
Wu, Hongkai .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (16) :1984-1997