Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels

被引:53
作者
Michler, Thorsten [1 ]
Naumann, Joerg [2 ]
Hock, Martin [3 ]
Berreth, Karl [4 ]
Balogh, Michael P. [5 ]
Sattler, Erich [6 ]
机构
[1] Adam Opel AG, Russelsheim, Germany
[2] BMW AG, Munich, Germany
[3] Linde AG, Pullach, Germany
[4] MPA, Stuttgart, Germany
[5] Gen Motors Res & Dev, Warren, MI USA
[6] MPA Stuttgart, Stuttgart, Germany
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2015年 / 628卷
关键词
Hydrogen embrittlement; Austenitic stainless steel; Cold forming; Williamson-Hall; HIGH-PRESSURE HYDROGEN; INDUCED RESIDUAL-STRESSES; GAS EMBRITTLEMENT; PRE-STRAIN; DEFORMATION; FRACTURE; SUSCEPTIBILITY; SENSITIZATION; PLASTICITY; RESISTANCE;
D O I
10.1016/j.msea.2015.01.054
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Austenitic stainless steels with three different nickel contents were cold worked to various forming degrees at various temperatures to obtain a wide variety of cold worked microstructures. Dislocation density analyses using the Williamson-Hall method provide first indications that strain hardening using technically relevant cold forming parameters increases the susceptibility of austenitic stainless steels to hydrogen environment embrittlement mainly by creating a microstructure with a "critical" amount of dislocations. Although an effect of prior-existing martensite may not be totally excluded, this effect seems to be minor compared to the effect of dislocation substructure. Macroscopic residual stresses have no significant influence on the susceptibility of cold worked austenitic stainless steels to hydrogen environment embrittlement in tensile tests. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 77 条
  • [31] Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach
    Martin, M. L.
    Robertson, I. M.
    Sofronis, P.
    [J]. ACTA MATERIALIA, 2011, 59 (09) : 3680 - 3687
  • [32] HYDROGEN OCCLUSIVITY AND EMBRITTLEMENT IN IRON - EFFECT OF GRAIN-STRUCTURE AND COLD WORK
    MARTINEZMADRID, M
    CHAN, SLI
    CHARLES, JA
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 1985, 1 (06) : 454 - 460
  • [33] Effects of hydrogen on tensile properties and fracture surface morphologies of Type 316L stainless steel
    Matsuo, Takashi
    Yamabe, Junichiro
    Matsuoka, Saburo
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (07) : 3542 - 3551
  • [34] Matsuo T, 2009, EFFECTS OF HYDROGEN ON MATERIALS, P105
  • [35] Hydrogen environment embrittlement of austenitic stainless steels at low temperatures
    Michler, Thorsten
    Naumann, Joerg
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (08) : 2111 - 2122
  • [36] Hydrogen environment embrittlement of stable austenitic steels
    Michler, Thorsten
    San Marchi, Chris
    Naumann, Joerg
    Weber, Sebastian
    Martin, Mauro
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) : 16231 - 16246
  • [37] Analysis of martensitic transformation in 304 type stainless steels tensile tested in high pressure hydrogen atmosphere by means of XRD and magnetic induction
    Michler, Thorsten
    Berreth, Karl
    Naumann, Joerg
    Sattler, Erich
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (04) : 3567 - 3572
  • [38] Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel
    Michler, Thorsten
    Lee, Yongwon
    Gangloff, Richard P.
    Naumann, Joerg
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (07) : 3201 - 3209
  • [39] Hydrogen environment embrittlement testing at low temperatures and high pressures
    Michler, Thorsten
    Yukhimchuk, Arkadiy A.
    Naumann, Joerg
    [J]. CORROSION SCIENCE, 2008, 50 (12) : 3519 - 3526
  • [40] Hydrogen transport in solution-treated and pre-strained austenitic stainless steels and its role in hydrogen-enhanced fatigue crack growth
    Mine, Y.
    Narazaki, C.
    Murakami, K.
    Matsuoka, S.
    Murakami, Y.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 1097 - 1107