Microstructural properties controlling hydrogen environment embrittlement of cold worked 316 type austenitic stainless steels

被引:53
|
作者
Michler, Thorsten [1 ]
Naumann, Joerg [2 ]
Hock, Martin [3 ]
Berreth, Karl [4 ]
Balogh, Michael P. [5 ]
Sattler, Erich [6 ]
机构
[1] Adam Opel AG, Russelsheim, Germany
[2] BMW AG, Munich, Germany
[3] Linde AG, Pullach, Germany
[4] MPA, Stuttgart, Germany
[5] Gen Motors Res & Dev, Warren, MI USA
[6] MPA Stuttgart, Stuttgart, Germany
关键词
Hydrogen embrittlement; Austenitic stainless steel; Cold forming; Williamson-Hall; HIGH-PRESSURE HYDROGEN; INDUCED RESIDUAL-STRESSES; GAS EMBRITTLEMENT; PRE-STRAIN; DEFORMATION; FRACTURE; SUSCEPTIBILITY; SENSITIZATION; PLASTICITY; RESISTANCE;
D O I
10.1016/j.msea.2015.01.054
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Austenitic stainless steels with three different nickel contents were cold worked to various forming degrees at various temperatures to obtain a wide variety of cold worked microstructures. Dislocation density analyses using the Williamson-Hall method provide first indications that strain hardening using technically relevant cold forming parameters increases the susceptibility of austenitic stainless steels to hydrogen environment embrittlement mainly by creating a microstructure with a "critical" amount of dislocations. Although an effect of prior-existing martensite may not be totally excluded, this effect seems to be minor compared to the effect of dislocation substructure. Macroscopic residual stresses have no significant influence on the susceptibility of cold worked austenitic stainless steels to hydrogen environment embrittlement in tensile tests. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:252 / 261
页数:10
相关论文
共 50 条
  • [1] INTERNAL REVERSIBLE HYDROGEN EMBRITTLEMENT AND HYDROGEN GAS EMBRITTLEMENT OF AUSTENITIC STAINLESS STEELS BASED ON TYPE 316
    Imade, Masaaki
    Zhang, Lin
    Wen, Mao
    Iijima, Takashi
    Fukuyama, Seiji
    Yokogawa, Kiyoshi
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, VOL 6, PTS A AND B, 2010, : 205 - 213
  • [2] Effects of dislocations and hydrogen concentration on hydrogen embrittlement of austenitic 316 stainless steels
    Ye, Fengjiao
    Zhu, Te
    Mori, Kazuhiro
    Xu, Qiu
    Song, Yamin
    Wang, Qianqian
    Yu, Runsheng
    Wang, Baoyi
    Cao, Xingzhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 876
  • [3] Hydrogen environment embrittlement of austenitic stainless steels at low temperatures
    Michler, Thorsten
    Naumann, Joerg
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (08) : 2111 - 2122
  • [4] EFFECT OF NITROGEN ON HYDROGEN EMBRITTLEMENT OF AUSTENITIC STAINLESS STEELS BASED ON TYPE 316LN
    Imade, Masaaki
    Zhang, Lin
    An, Bai
    Iijima, Takashi
    Fukuyama, Seiji
    Yokogawa, Kiyoshi
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE 2010, VOL 6, PTS A AND B, 2010, : 931 - 937
  • [5] Internal Reversible Hydrogen Embrittlement of Austenitic Stainless Steels Based on Type 316 at Low Temperatures
    Zhang, Lin
    Imade, Masaaki
    An, Bai
    Wen, Mao
    Iijima, Takashi
    Fukuyama, Seiji
    Yokogawa, Kiyoshi
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2013, 99 (04): : 294 - 301
  • [6] Internal Reversible Hydrogen Embrittlement of Austenitic Stainless Steels Based on Type 316 at Low Temperatures
    Zhang, Lin
    Imade, Masaaki
    An, Bai
    Wen, Mao
    Iijima, Takashi
    Fukuyama, Seiji
    Yokogawa, Kiyoshi
    ISIJ INTERNATIONAL, 2012, 52 (02) : 240 - 246
  • [7] Modelling of the hydrogen embrittlement in austenitic stainless steels
    Cavaliere, Pasquale
    Perrone, Angelo
    Marsano, Debora
    Marzanese, Antonio
    Sadeghi, Behzad
    MATERIALIA, 2023, 30
  • [8] HYDROGEN EMBRITTLEMENT OF AUSTENITIC STAINLESS-STEELS
    LOUTHAN, MR
    RAWL, DE
    DONOVAN, JA
    HOLMES, WG
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1975, 21 (JUN): : 158 - 158
  • [9] Annealing of cold-worked austenitic stainless steels
    Padilha, AF
    Plaut, RL
    Rios, PR
    ISIJ INTERNATIONAL, 2003, 43 (02) : 135 - 143
  • [10] Hydrogen Embrittlement Properties of Austenitic Stainless Steel Type 316L Welded Joint
    Nakamura, Jun
    Jotoku, Kana
    Osuki, Takahiro
    Omura, Tomohiko
    Matsunaga, Hisao
    Zairyo/Journal of the Society of Materials Science, Japan, 2024, 73 (07) : 603 - 609