Feature Extraction With Multiscale Covariance Maps for Hyperspectral Image Classification

被引:216
|
作者
He, Nanjun [1 ,2 ,3 ]
Paoletti, Mercedes E. [3 ]
Mario Haut, Juan [3 ]
Fang, Leyuan [1 ,2 ]
Li, Shutao [1 ,2 ]
Plaza, Antonio [3 ]
Plaza, Javier [3 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Key Lab Visual Percept & Artificial Intelligence, Changsha 410082, Hunan, Peoples R China
[3] Univ Extremadura, Dept Technol Comp & Commun, Escuela Politecn, Hyperspectral Comp Lab, Caceres 1003, Spain
来源
关键词
Data augmentation; deep convolutional neural networks (CNNs); hyperspectral image (HIS) classification; multiscale covariance maps (MCMs); SPECTRAL-SPATIAL CLASSIFICATION; EXTINCTION PROFILES; NEURAL-NETWORKS; IMPLEMENTATION; CNN;
D O I
10.1109/TGRS.2018.2860464
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The classification of hyperspectral images (HSIs) using convolutional neural networks (CNNs) has recently drawn significant attention. However, it is important to address the potential overfitting problems that CNN-based methods suffer when dealing with HSIs. Unlike common natural images, HSIs are essentially three-order tensors which contain two spatial dimensions and one spectral dimension. As a result, exploiting both spatial and spectral information is very important for HSI classification. This paper proposes a new handcrafted feature extraction method, based on multiscale covariance maps (MCMs), that is specifically aimed at improving the classification of HSIs using CNNs. The proposed method has the following distinctive advantages. First, with the use of covariance maps, the spatial and spectral information of the HSI can be jointly exploited. Each entry in the covariance map stands for the covariance between two different spectral bands within a local spatial window, which can absorb and integrate the two kinds of information (spatial and spectral) in a natural way. Second, by means of our multiscale strategy, each sample can be enhanced with spatial information from different scales, increasing the information conveyed by training samples significantly. To verify the effectiveness of our proposed method, we conduct comprehensive experiments on three widely used hyperspectral data sets, using a classical 2-D CNN (2DCNN) model. Our experimental results demonstrate that the proposed method can indeed increase the robustness of the CNN model. Moreover, the proposed MCMs+2DCNN method exhibits better classification performance than other CNN-based classification strategies and several standard techniques for spectral-spatial classification of HSIs.
引用
收藏
页码:755 / 769
页数:15
相关论文
共 50 条
  • [21] Salient feature extraction method for hyperspectral image classification
    Yu A.
    Liu B.
    Xing Z.
    Yang F.
    Yang Q.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2019, 48 (08): : 985 - 995
  • [22] Assessment of Feature Extraction Techniques for Hyperspectral Image Classification
    Mourya, Diwaker
    Dutta, Maitreyee
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTER ENGINEERING AND APPLICATIONS (ICACEA), 2015, : 499 - 502
  • [23] A Novel Feature Extraction Method for Hyperspectral Image Classification
    Cui Binge
    Fang Zongqi
    Xie Xiaoyun
    Zhong Yong
    Zhong Liwei
    2016 INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION, BIG DATA & SMART CITY (ICITBS), 2017, : 51 - 54
  • [24] Supervised Deep Feature Extraction for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Zhang, Pengqiang
    Yu, Anzhu
    Fu, Qiongying
    Wei, Xiangpo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 1909 - 1921
  • [25] Hyperspectral Image Classification with IFormer Network Feature Extraction
    Ren, Qi
    Tu, Bing
    Liao, Sha
    Chen, Siyuan
    REMOTE SENSING, 2022, 14 (19)
  • [26] Nonparametric Fuzzy Feature Extraction for Hyperspectral Image Classification
    Yang, Jinn-Min
    Yu, Pao-Ta
    Kuo, Bor-Chen
    Su, Ming-Hsiang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2010, 12 (03) : 208 - 217
  • [27] Hyperspectral On-Board Classification Algorithm Based on Multiscale Feature Extraction
    Yuan Shuai
    Sun Yanan
    He Weifeng
    Tu Shikui
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (10)
  • [28] Effect Of Feature Extraction And Classification Method On Hyperspectral Image Classification Accuracy
    Alraimi, Ahmed
    Erturk, Sarp
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 625 - 628
  • [30] AMFAN: Adaptive Multiscale Feature Attention Network for Hyperspectral Image Classification
    Zhang, Shichao
    Zhang, Jiahua
    Xun, Lan
    Wang, Jingwen
    Zhang, Da
    Wu, Zhenjiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19