Widespread increasing vegetation sensitivity to soil moisture

被引:193
作者
Li, Wantong [1 ]
Migliavacca, Mirco [1 ,2 ]
Forkel, Matthias [3 ]
Denissen, Jasper M. C. [1 ,4 ]
Reichstein, Markus [1 ,5 ]
Yang, Hui [1 ]
Duveiller, Gregory [1 ]
Weber, Ulrich [1 ]
Orth, Rene [1 ]
机构
[1] Max Planck Inst Biogeochem, Dept Biogeochem Integrat, Jena, Germany
[2] European Commiss, Joint Res Ctr JRC, Ispra, Italy
[3] Tech Univ Dresden, Inst Photogrammetry & Remote Sensing, Dresden, Germany
[4] Wageningen Univ, Hydrol & Quantitat Water Management Grp, Wageningen, Netherlands
[5] Integrat Ctr Biodivers Res iDIV, Leipzig, Germany
关键词
TREND ANALYSIS; DATA SETS; WATER; LAND; ECOSYSTEMS; DRIVEN; MODEL; PRODUCTIVITY; AVHRR; MODIS;
D O I
10.1038/s41467-022-31667-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Water availability is a major control of vegetation dynamics and terrestrial carbon cycling. Here, the authors show that vegetation sensitivity to soil moisture has been increasing in the last 36 years, especially in (semi)arid areas, and that state-of-the-art land surface models fail to capture this trend. Global vegetation and associated ecosystem services critically depend on soil moisture availability which has decreased in many regions during the last three decades. While spatial patterns of vegetation sensitivity to global soil water have been recently investigated, long-term changes in vegetation sensitivity to soil water availability are still unclear. Here we assess global vegetation sensitivity to soil moisture during 1982-2017 by applying explainable machine learning with observation-based leaf area index (LAI) and hydro-climate anomaly data. We show that LAI sensitivity to soil moisture significantly increases in many semi-arid and arid regions. LAI sensitivity trends are associated with multiple hydro-climate and ecological variables, and strongest increasing trends occur in the most water-sensitive regions which additionally experience declining precipitation. State-of-the-art land surface models do not reproduce this increasing sensitivity as they misrepresent water-sensitive regions and sensitivity strength. Our sensitivity results imply an increasing ecosystem vulnerability to water availability which can lead to exacerbated reductions in vegetation carbon uptake under future intensified drought, consequently amplifying climate change.
引用
收藏
页数:9
相关论文
共 73 条
  • [1] Skill and Global Trend Analysis of Soil Moisture from Reanalyses and Microwave Remote Sensing
    Albergel, C.
    Dorigo, W.
    Reichle, R. H.
    Balsamo, G.
    de Rosnay, P.
    Munoz-Sabater, J.
    Isaksen, L.
    de Jeu, R.
    Wagner, W.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2013, 14 (04) : 1259 - 1277
  • [2] Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations
    Albergel, C.
    de Rosnay, P.
    Balsamo, G.
    Isaksen, L.
    Munoz-Sabater, J.
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2012, 13 (05) : 1442 - 1460
  • [3] ERA-5 and ERA-Interim driven ISBA land surface model simulations: which one performs better?
    Albergel, Clement
    Dutra, Emanuel
    Munier, Simon
    Calvet, Jean-Christophe
    Munoz-Sabater, Joaquin
    de Rosnay, Patricia
    Balsamo, Gianpaolo
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2018, 22 (06) : 3515 - 3532
  • [4] Plant functional traits and climate influence drought intensification and land-atmosphere feedbacks
    Anderegg, William R. L.
    Trugman, Anna T.
    Bowling, David R.
    Salvucci, Guido
    Tuttle, Samuel E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (28) : 14071 - 14076
  • [5] A parameterization of leaf phenology for the terrestrial ecosystem component of climate models
    Arora, VK
    Boer, GJ
    [J]. GLOBAL CHANGE BIOLOGY, 2005, 11 (01) : 39 - 59
  • [6] Satellite and In Situ Observations for Advancing Global Earth Surface Modelling: A Review
    Balsamo, Gianpaolo
    Agusti-Parareda, Anna
    Albergel, Clement
    Arduini, Gabriele
    Beljaars, Anton
    Bidlot, Jean
    Bousserez, Nicolas
    Boussetta, Souhail
    Brown, Andy
    Buizza, Roberto
    Buontempo, Carlo
    Chevallier, Frederic
    Choulga, Margarita
    Cloke, Hannah
    Cronin, Meghan F.
    Dahoui, Mohamed
    De Rosnay, Patricia
    Dirmeyer, Paul A.
    Drusch, Matthias
    Dutra, Emanuel
    Ek, Michael B.
    Gentine, Pierre
    Hewitt, Helene
    Keeley, Sarah P. E.
    Kerr, Yann
    Kumar, Sujay
    Lupu, Cristina
    Mahfouf, Jean-Francois
    McNorton, Joe
    Mecklenburg, Susanne
    Mogensen, Kristian
    Munoz-Sabater, Joaquin
    Orth, Rene
    Rabier, Florence
    Reichle, Rolf
    Ruston, Ben
    Pappenberger, Florian
    Sandu, Irina
    Seneviratne, Sonia I.
    Tietsche, Steffen
    Trigo, Isabel F.
    Uijlenhoet, Remko
    Wedi, Nils
    Woolway, R. Iestyn
    Zeng, Xubin
    [J]. REMOTE SENSING, 2018, 10 (12)
  • [7] Global ecosystem thresholds driven by aridity
    Berdugo, Miguel
    Delgado-Baquerizo, Manuel
    Soliveres, Santiago
    Hernandez-Clemente, Rocio
    Zhao, Yanchuang
    Gaitan, Juan J.
    Gross, Nicolas
    Saiz, Hugo
    Maire, Vincent
    Lehman, Anika
    Rillig, Matthias C.
    Sole, Ricard V.
    Maestre, Fernando T.
    [J]. SCIENCE, 2020, 367 (6479) : 787 - +
  • [8] Global sensitivities of forest carbon changes to environmental conditions
    Besnard, Simon
    Santoro, Maurizio
    Cartus, Oliver
    Fan, Naixin
    Linscheid, Nora
    Nair, Richard
    Weber, Ulrich
    Koirala, Sujan
    Carvalhais, Nuno
    [J]. GLOBAL CHANGE BIOLOGY, 2021, 27 (24) : 6467 - 6483
  • [9] Breiman L., 2001, Machine Learning, V45, P5
  • [10] Budyko M.I, 1974, Climate and life