Edge-Selective Growth of MCp2 (M = Fe, Co, and Ni) Precursors on Pt Nanoparticles in Atomic Layer Deposition: A Combined Theoretical and Experimental Study

被引:37
作者
Wen, Yanwei [1 ,2 ]
Cai, Jiaming [3 ,4 ]
Zhang, Jie [1 ,2 ]
Yang, Jiaqiang [1 ,2 ]
Shi, Lu [1 ,2 ]
Cao, Kun [3 ,4 ]
Chen, Rong [3 ,4 ]
Shan, Bin [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[3] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Hubei, Peoples R China
[4] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
INITIO MOLECULAR-DYNAMICS; CATALYSTS; ENERGY; HYDROGENATION; METALS;
D O I
10.1021/acs.chemmater.8b03168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recent experiments about the selective coating of transition-metal oxide on Pt nanoparticles have aroused great interest in molecular catalysis for the promotion of both activity and stability. In this work, first-principles calculations combined with microkinetic methods are employed to shed to light on the edge-selective growth mechanism of 3d-transition metal oxide on Pt nanoparticles in atomic layer deposition (ALD) from the metal cyclopentadienyl precursors (MCp2, M = Fe, Co, and Ni). The MCp2 decomposition on the surface of Pt nanoparticles exhibits robust preferential growth, following the order of edge > (100) > (111), which indicates that edges are naturally selected to be covered and the (111) facets could survive toward the MCp2 precursors. The preferred deposition on the edge site is attributed to a more favorable splitting path for the precursors. On the other hand, competing reactions make the overall reaction rates of MCp2 precursors on edge sites follow the order of NiCp2 > FeCp2 > CoCp2. Moreover, the reaction rate analysis indicates that the edge selectivity of MCp2 on Pt nanoparticles is temperature dependent, and a high temperature will suppress the selectivity between different sites. FeCp2 could maintain high selectivity in a wide temperature range among the three precursors. The theoretical predictions about the edge-selective growth of MCp2 are confirmed by the Fourier transform infrared measurements of CO signals on successive ALD-coated Pt nanoparticles. The combination of theoretical and experimental study demonstrates the robust edge-selective growth of MCp2 on Pt nanoparticles, which may open up a new avenue for the design of metal-oxide composite catalyst with specific site passivation.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 33 条
[1]   Atomic layer deposition of platinum thin films [J].
Aaltonen, T ;
Ritala, M ;
Sajavaara, T ;
Keinonen, J ;
Leskelä, M .
CHEMISTRY OF MATERIALS, 2003, 15 (09) :1924-1928
[2]   Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance [J].
Antolini, Ermete .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 181 :298-313
[3]   Selective Passivation of Pt Nanoparticles with Enhanced Sintering Resistance and Activity toward CO Oxidation via Atomic Layer Deposition [J].
Cai, Jiaming ;
Zhang, Jie ;
Cao, Kun ;
Gong, Miao ;
Lang, Yun ;
Liu, Xiao ;
Chu, Shengqi ;
Shan, Bin ;
Chen, Rong .
ACS APPLIED NANO MATERIALS, 2018, 1 (02) :522-530
[4]   Nanofence Stabilized Platinum Nanoparticles Catalyst via Facet-Selective Atomic Layer Deposition [J].
Cao, Kun ;
Shi, Lu ;
Gong, Miao ;
Cai, Jiaming ;
Liu, Xiao ;
Chu, Shengqi ;
Lang, Yun ;
Shan, Bin ;
Chen, Rong .
SMALL, 2017, 13 (32)
[5]   Surface Decoration of Pt Nanoparticles via ALD with TiO2 Protective Layer on Polymeric Nanofibers as Flexible and Reusable Heterogeneous Nanocatalysts [J].
Celebioglu, Asli ;
Ranjith, Kugalur Shanmugam ;
Eren, Hamit ;
Biyikli, Necmi ;
Uyar, Tamer .
SCIENTIFIC REPORTS, 2017, 7
[6]   Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition [J].
Elliott, Simon D. ;
Dey, Gangotri ;
Maimaiti, Yasheng ;
Ablat, Hayrensa ;
Filatova, Ekaterina A. ;
Fomengia, Glen N. .
ADVANCED MATERIALS, 2016, 28 (27) :5367-5380
[7]   Atomic-scale simulation of ALD chemistry [J].
Elliott, Simon D. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (07)
[8]   Alumina Over-coating on Pd Nanoparticle Catalysts by Atomic Layer Deposition: Enhanced Stability and Reactivity [J].
Feng, Hao ;
Lu, Junling ;
Stair, Peter C. ;
Elam, Jeffrey W. .
CATALYSIS LETTERS, 2011, 141 (04) :512-517
[9]   Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening? [J].
Hansen, Thomas W. ;
Delariva, Andrew T. ;
Challa, Sivakumar R. ;
Datye, Abhaya K. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (08) :1720-1730
[10]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904