Analytical solution for the time-fractional telegraph equation by the method of separating variables

被引:195
作者
Chen, J. [2 ,3 ]
Liu, F. [1 ,4 ]
Anh, V. [1 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[3] Jimei Univ, Coll Math, Xiamen 361021, Peoples R China
[4] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
fractional telegraph equation; multivariate Mittag-Leffler function; method of separating variables;
D O I
10.1016/j.jmaa.2007.06.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE). We discuss and derive the analytical solution of the TFTE with three kinds of nonhomogeneous boundary conditions, namely, Dirichlet, Neumann and Robin boundary conditions. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1364 / 1377
页数:14
相关论文
共 25 条
  • [21] Time-fractional telegraph equations and telegraph processes with Brownian time
    Orsingher, E
    Beghin, L
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2004, 128 (01) : 141 - 160
  • [22] Podlubny I., 1999, Fractional Di ff erential Equations
  • [23] Samko SG., 1993, Fractional Integral and Derivatives: Theory and Applications
  • [24] FRACTIONAL DIFFUSION AND WAVE-EQUATIONS
    SCHNEIDER, WR
    WYSS, W
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (01) : 134 - 144
  • [25] Implicit difference approximation for the time fractional diffusion equation
    Zhuang P.
    Liu F.
    [J]. J. Appl. Math. Comp., 2006, 3 (87-99): : 87 - 99