Adaptive stochastic approximation algorithm

被引:4
作者
Kresoja, Milena [1 ]
Luzanin, Zorana [1 ]
Stojkovska, Irena [2 ]
机构
[1] Univ Novi Sad, Fac Sci, Dept Math & Informat, Trg Dositeja Obradovica 4, Novi Sad 21000, Serbia
[2] Ss Cyril & Methodius Univ, Fac Nat Sci & Math, Dept Math, Arhimedova 3, Skopje 1000, Macedonia
关键词
Unconstrained optimization; Stochastic optimization; Stochastic approximation; Noisy function; Adaptive step size; Gradient method; Descent direction; OPTIMIZATION METHODS; GRADIENT;
D O I
10.1007/s11075-017-0290-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, stochastic approximation (SA) algorithm with a new adaptive step size scheme is proposed. New adaptive step size scheme uses a fixed number of previous noisy function values to adjust steps at every iteration. The algorithm is formulated for a general descent direction and almost sure convergence is established. The case when negative gradient is chosen as a search direction is also considered. The algorithm is tested on a set of standard test problems. Numerical results show good performance and verify efficiency of the algorithm compared to some of existing algorithms with adaptive step sizes.
引用
收藏
页码:917 / 937
页数:21
相关论文
共 24 条
  • [1] [Anonymous], 2007, AISTATS
  • [2] [Anonymous], 1995, Probability: theory and examples
  • [3] [Anonymous], 2000, C&H TEXT STAT SCI
  • [4] Gradient convergence in gradient methods with errors
    Bertsekas, DP
    Tsitsiklis, JN
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (03) : 627 - 642
  • [5] A STOCHASTIC QUASI-NEWTON METHOD FOR LARGE-SCALE OPTIMIZATION
    Byrd, R. H.
    Hansen, S. L.
    Nocedal, Jorge
    Singer, Y.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2016, 26 (02) : 1008 - 1031
  • [6] Sample size selection in optimization methods for machine learning
    Byrd, Richard H.
    Chin, Gillian M.
    Nocedal, Jorge
    Wu, Yuchen
    [J]. MATHEMATICAL PROGRAMMING, 2012, 134 (01) : 127 - 155
  • [7] ON THE USE OF STOCHASTIC HESSIAN INFORMATION IN OPTIMIZATION METHODS FOR MACHINE LEARNING
    Byrd, Richard H.
    Chin, Gillian M.
    Neveitt, Will
    Nocedal, Jorge
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 977 - 995
  • [8] Chen H. F., 2002, STOCHASTIC APPROXIMA
  • [9] ACCELERATED STOCHASTIC APPROXIMATION
    Delyon, Bernard
    Juditsky, Anatoli
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (04) : 868 - 881
  • [10] ACCELERATED STOCHASTIC-APPROXIMATION
    KESTEN, H
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1958, 29 (01): : 41 - 59