Diffusion in a time-dependent external field

被引:2
|
作者
Trigger, S. A. [1 ]
van Heijst, G. J. F. [2 ]
Petrov, O. F. [1 ]
Schram, P. P. J. M. [2 ]
机构
[1] Russian Acad Sci, Joint Inst High Temp, Moscow 127412, Russia
[2] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
10.1103/PhysRevE.77.011107
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The problem of diffusion in a time-dependent (and generally inhomogeneous) external field is considered on the basis of a generalized master equation with two times, introduced by Trigger and co-authors [S. A. Trigger, G. J. F. van Heijst, and P. P. J. M. Schram, Physica A 347, 77 (2005); J. Phys.: Conf. Ser. 11, 37 (2005)]. We consider the case of the quasi-Fokker-Planck approximation, when the probability transition function for diffusion (PTD function) does not possess a long tail in coordinate space and can be expanded as a function of instantaneous displacements. The more complicated case of long tails in the PTD will be discussed separately. We also discuss diffusion on the basis of hydrodynamic and kinetic equations and show the validity of the phenomenological approach. A type of "collision" integral is introduced for the description of diffusion in a system of particles, which can transfer from a moving state to the rest state (with some waiting time distribution). The solution of the appropriate kinetic equation in the external field also confirms the phenomenological approach of the generalized master equation.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Time-Dependent Diffusion in Prostate Cancer
    Lemberskiy, Gregory
    Rosenkrantz, Andrew B.
    Veraart, Jelle
    Taneja, Samir S.
    Novikov, Dmitry S.
    Fieremans, Els
    INVESTIGATIVE RADIOLOGY, 2017, 52 (07) : 405 - 411
  • [32] Diffusion through time-dependent media
    Holschneider, M
    Gensane, O
    Le Mouël, JL
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2000, 141 (02) : 299 - 306
  • [33] Time-dependent diffusion in stellar atmospheres
    Alecian, G.
    Stift, M. J.
    Dorfi, E. A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 418 (02) : 986 - 997
  • [34] TIME-DEPENDENT AMBIPOLAR DIFFUSION WAVES
    SHIMONY, Z
    CHAN, JH
    PHYSICS OF FLUIDS, 1965, 8 (09) : 1704 - &
  • [35] Diffusion in a potential with a time-dependent discontinuity
    Chvosta, P
    Reineker, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (33): : 8753 - 8758
  • [36] Diffusion in time-dependent confined geometries
    Marcelo T. Araujo
    The European Physical Journal B, 2016, 89
  • [37] TIME-DEPENDENT DIFFUSION-COEFFICIENTS
    SCHURR, JM
    JOURNAL OF CHEMICAL PHYSICS, 1981, 74 (02): : 1428 - 1430
  • [38] Diffusion under time-dependent resetting
    Pal, Arnab
    Kundu, Anupam
    Evans, Martin R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (22)
  • [39] Taylor diffusion in time-dependent flow
    Azer, K
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (13) : 2735 - 2740
  • [40] LORENTZ MODEL AND TIME-DEPENDENT DIFFUSION
    HUCHITAL, DA
    HOLLINGER, HB
    HOLT, EH
    PHYSICS OF FLUIDS, 1969, 12 (08) : 1691 - +