Complex dynamics of the population with a simple age structure

被引:21
|
作者
Frisman, E. Y. [1 ]
Neverova, G. P. [1 ]
Revutskaya, O. L. [1 ]
机构
[1] Russian Acad Sci, Inst Complex Anal Reg Problems, Far Easten Branch, Birobidjan 679016, Russia
关键词
Population model; Discrete-time model; Nonlinear system; Age structure; Density-dependent factors; Stability; Bifurcations; Chaos; FARMLAND BIRDS; MODELS; TRENDS; ABUNDANCE; PATTERNS; CYCLES;
D O I
10.1016/j.ecolmodel.2011.03.043
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The effects of the following modes of density-dependent control of population growth: density-dependent birth rate, adult survival rate, juvenile survival rate are compared based on the mathematical model of population dynamics. It is shown that the most efficient mechanisms limiting population size are decreasing with the growth of the adult population birth rate and/or the decreasing survival rate of the offspring with the increase in their number. However, these same mechanisms are responsible for oscillations of the population size and its chaotic change. The density-dependence of the adult survival rate is not efficient in constraining the population growth, but it can substantially limit the magnitude of oscillations of the population size. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1943 / 1950
页数:8
相关论文
共 50 条
  • [31] PERIODIC-SOLUTIONS FOR A POPULATION-DYNAMICS PROBLEM WITH AGE-DEPENDENCE AND SPATIAL STRUCTURE
    KUBO, M
    LANGLAIS, M
    JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (04) : 363 - 378
  • [32] The Influence on Urbanization by the Age Structure of Population
    Wen, Xian-ming
    Qian, Qiu-lan
    Xiong, Ying
    2015 INTERNATIONAL CONFERENCE ON EDUCATION, MANAGEMENT AND SYSTEMS ENGINEERING (EMSE 2015), 2015, : 201 - 205
  • [33] On the dynamics of the age structure, dependency, and consumption
    Hock, Heinrich
    Weil, David N.
    JOURNAL OF POPULATION ECONOMICS, 2012, 25 (03) : 1019 - 1043
  • [34] Identification of simple reaction coordinates from complex dynamics
    McGibbon, Robert T.
    Husic, Brooke E.
    Pande, Vijay S.
    JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (04):
  • [35] Complex dynamics in a simple model of interdependent open economies
    Yousefi, S
    Maistrenko, Y
    Popovych, S
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2000, 5 (03) : 161 - 177
  • [36] Estimating chaos and complex dynamics in an insect population
    Dennis, B
    Desharnais, RA
    Cushing, JM
    Henson, SM
    Costantino, RF
    ECOLOGICAL MONOGRAPHS, 2001, 71 (02) : 277 - 303
  • [37] Dynamics of General Class of Difference Equations and Population Model with Two Age Classes
    Moaaz, Osama
    Chatzarakis, George E.
    Chalishajar, Dimplekumar
    Bazighifan, Omar
    MATHEMATICS, 2020, 8 (04)
  • [38] Optimal birth control problems for nonlinear age-structured population dynamics
    He, ZR
    Wang, MS
    Ma, ZE
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2004, 4 (03): : 589 - 594
  • [39] On a periodic age-structured mosquito population model with spatial structure
    Lv, Yunfei
    Pei, Yongzhen
    Yuan, Rong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 61
  • [40] Adult Age-Structure Variability in an Amphibian in Relation to Population Decline
    Middleton, Jessica
    Green, David M.
    HERPETOLOGICA, 2015, 71 (03) : 190 - 195