Drivers, challenges, and emerging technologies for desalination of high-salinity brines: A critical review

被引:160
作者
Shah, Kinnari M. [1 ]
Billinge, Ian H. [1 ]
Chen, Xi [1 ]
Fan, Hanqing [1 ]
Huang, Yuxuan [1 ]
Winton, Robert K. [1 ]
Yip, Ngai Yin [1 ,2 ]
机构
[1] Columbia Univ, Dept Earth & Environm Engn, New York, NY 10027 USA
[2] Columbia Univ, Columbia Water Ctr, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
Desalination; Hypersaline brines; Zero liquid discharge; Emerging technologies; Fit-for-purpose water reuse; Energy consumption; Scaling; HUMIDIFICATION-DEHUMIDIFICATION DESALINATION; EUTECTIC FREEZE CRYSTALLIZATION; CONTACT MEMBRANE DISTILLATION; GAS PRODUCED WATER; ZERO LIQUID DISCHARGE; REVERSE-OSMOSIS DESALINATION; HYDRATE BASED DESALINATION; OF-THE-ART; MULTISTAGE FLASH DESALINATION; PRESSURE-RETARDED OSMOSIS;
D O I
10.1016/j.desal.2022.115827
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Hypersaline brines are of growing environmental concern. While high-salinity desalination and zero liquid discharge (ZLD) are increasingly attractive treatment options, the high salt and scalant contents pose considerable technical difficulties to existing desalination techniques. In this review, we introduce sources of hyper saline brines, examine factors driving high-salinity desalination, and present the thermodynamic minimum energy of hypersaline desalination and ZLD, highlighting effects of mineral precipitation and imperfect salt rejection. We then critically examine prospects and challenges of 10 alternative technologies for hypersaline desalination: electrodialysis, osmotically-mediated reverse osmosis, forward osmosis, membrane distillation, humidification-dehumidification, solvent extraction desalination, supercritical water desalination, freeze desalination, clathrate hydrate desalination, and solar thermal desalination. Although electrodialysis and osmotically-mediated reverse osmosis show promise of having competitive energy efficiencies, these membrane based techniques are still constrained by concentrate salinity limits. Recovery and reuse of heat will be vital for competitiveness of thermally-driven approaches. Technologies that intrinsically precipitate salts in bulk solution, namely solvent extraction desalination, supercritical water desalination, and humidification-dehumidification, can advantageously avoid mineral scaling. Due to the highly heterogeneous nature of hypersaline streams and the wide array of end-use goals, the high-salinity desalination market will ultimately be best served by a range of different technologies with distinctive capabilities.
引用
收藏
页数:26
相关论文
共 50 条
[31]   Transport and structural properties of osmotic membranes in high-salinity desalination using cascading osmotically mediated reverse osmosis [J].
Chen, Xi ;
Boo, Chanhee ;
Yip, Ngai Yin .
DESALINATION, 2020, 479
[32]   Pilot Scale Demonstration of Low-Salt-Rejection Reverse Osmosis (LSRRO) Desalination of High Salinity Brines [J].
Van Houghton, Brett D. ;
Rosenblum, James S. ;
Lampi, Keith ;
Beaudry, Edward ;
Herron, Jack J. ;
del Cerro, Martina ;
De Finnda, Casey T. K. ;
Elimelech, Menachem ;
Gilron, Jack ;
Cath, Tzahi Y. .
ACS ES&T WATER, 2024, 4 (11) :5089-5104
[33]   Comparative techno-economic assessment of osmotically-assisted reverse osmosis and batch-operated vacuum-air-gap membrane distillation for high-salinity water desalination [J].
Zhang, Z. ;
Atia, A. A. ;
Andres-Manas, J. A. ;
Zaragoza, G. ;
Fthenakis, V. .
DESALINATION, 2022, 532
[34]   A review of fundamentals, challenges, prospects, and emerging trends in hydrate-based desalination [J].
Jalili, Ali ;
Kolliopoulos, Georgios .
NPJ CLEAN WATER, 2025, 8 (01)
[35]   Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines [J].
McGinnis, Robert L. ;
Hancock, Nathan T. ;
Nowosielski-Slepowron, Marek S. ;
McGurgan, Gary D. .
DESALINATION, 2013, 312 :67-74
[36]   Emerging materials and technologies for landfill leachate treatment: A critical review [J].
Bandala, Erick R. ;
Liu, An ;
Wijesiri, Buddhi ;
Zeidman, Ahdee B. ;
Goonetilleke, Ashantha .
ENVIRONMENTAL POLLUTION, 2021, 291
[37]   Tailoring the microstructure of poly(vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation [J].
Sun, Jiawei ;
Qian, Xiaowei ;
Wang, Ziheng ;
Zeng, Feixiang ;
Bai, Hongcun ;
Li, Na .
JOURNAL OF MEMBRANE SCIENCE, 2020, 599
[38]   A critical review on the development and challenges of concentrated solar power technologies [J].
Shahabuddin, M. ;
Alim, M. A. ;
Alam, Tanvir ;
Mofijur, M. ;
Ahmed, S. F. ;
Perkins, Greg .
SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 47
[39]   Challenges and opportunities of recovering lithium from seawater, produced water, geothermal brines, and salt lakes using conventional and emerging technologies [J].
Nikkhah, Hasan ;
Ipekci, Deniz ;
Xiang, Wenjun ;
Stoll, Zachary ;
Xu, Pei ;
Li, Baikun ;
McCutcheon, Jeffrey R. ;
Beykal, Burcu .
CHEMICAL ENGINEERING JOURNAL, 2024, 498
[40]   Hofmeister effect-based 3D hydrogel sponge via non-contact localized crystallization for achieving zero liquid discharge desalination of high-salinity brine [J].
Xu, Youyuan ;
Tang, Yakun ;
Liu, Lang ;
Zhang, Yue ;
Bai, Xiang ;
Zhang, Biao ;
Jia, Zhiguo .
DESALINATION, 2025, 610