Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces

被引:49
作者
Bonanno, Gabriele [4 ]
Bisci, Giovanni Molica [3 ]
Radulescu, Vicentiu [1 ,2 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Acad Romana, Inst Math Simion Stoilow, Bucharest 014700, Romania
[3] Univ Reggio Calabria, Dept PAU, Architecture Fac, I-89100 Reggio Di Calabria, Italy
[4] Univ Messina, Fac Engn, Math Sect, Dept Sci Engn & Architecture, I-98166 Messina, Italy
关键词
D O I
10.1016/j.crma.2011.02.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Neumann problem - div(alpha(vertical bar del u vertical bar)del u) + alpha(vertical bar u vertical bar)u = lambda f (x, u) in Omega, partial derivative u/partial derivative v = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N, lambda is a positive parameter, f is a continuous function, and alpha is a real-valued mapping defined on (0, infinity). The main result in this Note establishes that for all lambda in a prescribed open interval, this problem has infinitely many solutions that converge to zero in the Orlicz-Sobolev space (WL Phi)-L-1(Omega). (C) 2011 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 8 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]  
[Anonymous], 2004, Mediterr. J. Math, DOI DOI 10.1007/S00009-004-0014-6
[3]  
BONANNO G, MONATSH MAT IN PRESS, DOI DOI 10.1007/S00605-010-0280-2
[4]   Infinitely Many Solutions for a Boundary Value Problem with Discontinuous Nonlinearities [J].
Bonanno, Gabriele ;
Bisci, Giovanni Molica .
BOUNDARY VALUE PROBLEMS, 2009,
[5]   On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting [J].
Garcia-Huidobro, M. ;
Le, V. K. ;
Manasevich, R. ;
Schmitt, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1999, 6 (02) :207-225
[6]   Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz-Sobolev space setting [J].
Kristaly, Alexandru ;
Mihailescu, Mihai ;
Radulescu, Vicentiu .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :367-379
[7]   A general variational principle and some of its applications [J].
Ricceri, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 113 (1-2) :401-410
[8]  
Zeidler E., 1985, Nonlinear Functional Analysis and its Applications, VII