Multi-pulse edge-localized states on quantum graphs

被引:3
|
作者
Kairzhan, Adilbek [1 ]
Pelinovsky, Dmitry E. [2 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON, Canada
[2] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NONLINEAR SCHRODINGER; STANDING WAVES; STABILITY;
D O I
10.1007/s13324-021-00603-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct the edge-localized stationary states of the nonlinear Schrodinger equation on a general quantum graph in the limit of large mass. Compared to the previous works, we include arbitrary multi-pulse positive states which approach asymptotically a composition of N solitons, each sitting on a bounded (pendant, looping, or internal) edge. We give sufficient conditions on the edge lengths of the graph under which such states exist in the limit of large mass. In addition, we compute the precise Morse index (the number of negative eigenvalues in the corresponding linearized operator) for these multi-pulse states. If N solitons of the edge-localized state reside on the pendant and looping edges, we prove that the Morse index is exactly N. The technical novelty of this work is achieved by avoiding elliptic functions (and related exponentially small scalings) and closing the existence arguments in terms of the Dirichlet-to-Neumann maps for relevant parts of the given graph. We illustrate the general results with three examples of the flower, dumbbell, and single-interval graphs.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Dynamics of filaments during the edge-localized mode crash on NSTX
    Lampert, M.
    Diallo, A.
    Myra, J. R.
    Zweben, S. J.
    PHYSICS OF PLASMAS, 2021, 28 (02)
  • [32] The model of synchronization between internal reconnections and edge-localized modes
    Bulanin, V. V.
    Kurskiev, G. S.
    Solokha, V. V.
    Yashin, A. Yu
    Zhiltsov, N. S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (12)
  • [33] A gyrokinetic one-dimensional scrape-off layer model of an edge-localized mode heat pulse
    Shi, E. L.
    Hakim, A. H.
    Hammett, G. W.
    PHYSICS OF PLASMAS, 2015, 22 (02)
  • [34] Influence of poloidal equilibrium rotation in MHD simulations of edge-localized modes
    Pamela, S.
    Huysmans, G.
    Benkadda, S.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (07)
  • [35] Understanding edge-localized mode mitigation by resonant magnetic perturbations on MAST
    Kirk, A.
    Chapman, I. T.
    Liu, Yueqiang
    Cahyna, P.
    Denner, P.
    Fishpool, G.
    Ham, C. J.
    Harrison, J. R.
    Liang, Yunfeng
    Nardon, E.
    Saarelma, S.
    Scannell, R.
    Thornton, A. J.
    NUCLEAR FUSION, 2013, 53 (04)
  • [36] Effect of energetic ions on edge-localized modes in tokamak plasmas
    Dominguez-Palacios, J.
    Futatani, S.
    Garcia-Munoz, M.
    van Vuuren, A. Jansen
    Viezzer, E.
    Gonzalez-Martin, J.
    Toscano-Jimenez, M.
    Oyola, P.
    Todo, Y.
    Suzuki, Y.
    Sanchis, L.
    Rueda-Rueda, J.
    Galdon-Quiroga, J.
    Hidalgo-Salaverri, J.
    Chen, H.
    Rivero-Rodriguez, J. F.
    Velarde, L.
    NATURE PHYSICS, 2025, 21 (01) : 43 - 51
  • [37] Importance of resistivity on edge-localized mode onset in spherical tokamaks
    Kleiner, A.
    Ferraro, N. M.
    Diallo, A.
    Canal, G. P.
    NUCLEAR FUSION, 2021, 61 (06)
  • [38] A stochastic model of edge-localized modes in magnetically confined plasmas
    Kim, Eun-jin
    Hollerbach, Rainer
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2242):
  • [39] Comparison of small edge-localized modes on MAST and ASDEX Upgrade
    Kirk, A.
    Muller, H. W.
    Wolfrum, E.
    Meyer, H.
    Herrmann, A.
    Lunt, T.
    Rohde, V.
    Tamain, P.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (09)
  • [40] EDGE-LOCALIZED THERMONUCLEAR MAGNETOACOUSTIC-CYCLOTRON INSTABILITY IN TOKAMAKS
    BELIKOV, VS
    KOLESNICHENKO, YI
    FUSION TECHNOLOGY, 1994, 25 (03): : 258 - 265