On a nonlocal problem for fractional integrodifferential inclusions in Banach spaces

被引:13
作者
Yan, Zuomao [1 ]
机构
[1] Hexi Univ, Dept Math, Zhangye 734000, Gansu, Peoples R China
关键词
fractional integrodifferential inclusion; fractional derivative; fixed point; nonlocal condition; DIFFERENTIAL-INCLUSIONS; EVOLUTION INCLUSIONS; MILD SOLUTION; EXISTENCE; EQUATIONS; CONTROLLABILITY; UNIQUENESS; SYSTEMS;
D O I
10.4064/ap101-1-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates a class of fractional functional integrodifferential inclusions with nonlocal conditions in Banach spaces. The existence of mild solutions of these inclusions is determined under mixed continuity and Caratheodory conditions by using strongly continuous operator semigroups and Bohnenblust-Karlin's fixed point theorem.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 39 条
[1]   Existence results for a class of abstract nonlocal Cauchy problems [J].
Aizicovici, S ;
McKibben, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (05) :649-668
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[4]   Controllability of fractional integrodifferential systems in Banach spaces [J].
Balachandran, K. ;
Park, J. Y. .
NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2009, 3 (04) :363-367
[5]   The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces [J].
Balachandran, Krishnan ;
Trujillo, Juan J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4587-4593
[6]   Controllability results for semilinear evolution inclusions with nonlocal conditions [J].
Benchohra, M ;
Gatsori, EP ;
Ntouyas, SK .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2003, 118 (03) :493-513
[7]  
Benchohra M., 2008, Fractional Calculus and Applied Analysis, V11, P35
[8]  
Bohnenblust H., 1950, Contributions to the theory of games, V1, P155
[9]   Existence of solutions of a semilinear functional-differential evolution nonlocal problem [J].
Byszewski, L ;
Akca, H .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 34 (01) :65-72
[10]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505