Data-Driven Stabilization of Nonlinear Polynomial Systems With Noisy Data

被引:55
|
作者
Guo, Meichen [1 ]
De Persis, Claudio [1 ]
Tesi, Pietro [2 ]
机构
[1] Univ Groningen, Fac Sci & Engn, ENTEG, NL-9747 AG Groningen, Netherlands
[2] Univ Florence, DINFO, I-50139 Florence, Italy
关键词
Noise measurement; Control systems; Linear systems; Lyapunov methods; Nonlinear systems; Linear matrix inequalities; Stability analysis; Data-driven control; nonlinear control; nonlinear systems; robust control; sum of squares; OPTIMIZATION; DESIGN; SUM;
D O I
10.1109/TAC.2021.3115436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a recent article, we have shown how to learn controllers for unknown linear systems using finite-length noisy data by solving linear matrix inequalities. In this article, we extend this approach to deal with unknown nonlinear polynomial systems by formulating stability certificates in the form of data-dependent sum of squares programs, whose solution directly provides a stabilizing controller and a Lyapunov function. We then derive variations of this result that lead to more advantageous controller designs. The results also reveal connections to the problem of designing a controller starting from a least-square estimate of the polynomial system.
引用
收藏
页码:4210 / 4217
页数:8
相关论文
共 50 条
  • [21] Data-Driven Observability Analysis for Nonlinear Stochastic Systems
    Massiani, Pierre-Francois
    Buisson-Fenet, Mona
    Solowjow, Friedrich
    Di Meglio, Florent
    Trimpe, Sebastian
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (06) : 4042 - 4049
  • [22] Online Data-Driven Control of Nonlinear Systems Using Semidefinite Programming
    Bozza, Augusto
    Martin, Tim
    Cavone, Graziana
    Carli, Raffaele
    Dotoli, Mariagrazia
    Allgoewer, Frank
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 3189 - 3194
  • [23] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [24] Data-Driven Filtering for Nonlinear Systems With Bounded Noises and Quantized Measurements
    Xia, Yuanqing
    Yu, Dongdong
    Li, Li
    Yang, Hongjiu
    Xie, Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2018, 65 (10) : 3404 - 3413
  • [25] Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness
    De Persis, Claudio
    Tesi, Pietro
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (03) : 909 - 924
  • [26] Data-Driven Reachability Analysis for Nonlinear Systems
    Park, Hyunsang
    Vijay, Vishnu
    Hwang, Inseok
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 2661 - 2666
  • [27] An Interpretable Data-Driven Learning Approach for Nonlinear Aircraft Systems With Noisy Interference
    Cao, Rui
    Lu, Kelin
    Liu, Yanbin
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2025, 61 (01) : 182 - 194
  • [28] Data-Driven Reachability Analysis From Noisy Data
    Alanwar, Amr
    Koch, Anne
    Allgoewer, Frank
    Johansson, Karl Henrik
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 3054 - 3069
  • [29] Data-Driven Iterative Learning Control of Nonlinear Systems by Adaptive Model Matching
    Lee, Yu-Hsiu
    Rai, Sandeep
    Tsao, Tsu-Chin
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 5626 - 5636
  • [30] Data-Driven Quadratic Stabilization of Continuous LTI Systems
    Dai, Tianyu
    Sznaier, Mario
    Solvas, Biel Roig
    IFAC PAPERSONLINE, 2020, 53 (02): : 3965 - 3970