Spectral simulation of vector random fields with stationary Gaussian increments in d-dimensional Euclidean spaces

被引:15
作者
Arroyo, Daisy [1 ,2 ]
Emery, Xavier [1 ,2 ]
机构
[1] Univ Chile, Dept Min Engn, Santiago, Chile
[2] Univ Chile, Adv Min Technol Ctr, Santiago, Chile
关键词
Intrinsic random fields; Direct and cross variograms; Spectral density matrix; Turning bands; Fractional Brownian surfaces; Self-similarity; FRACTIONAL BROWNIAN-MOTION; INTRINSIC RANDOM-FIELDS; MODEL; MULTIVARIATE; POWER;
D O I
10.1007/s00477-016-1225-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper addresses the problem of simulating multivariate random fields with stationary Gaussian increments in a d-dimensional Euclidean space. To this end, one considers a spectral turning-bands algorithm, in which the simulated field is a mixture of basic random fields made of weighted cosine waves associated with random frequencies and random phases. The weights depend on the spectral density of the direct and cross variogram matrices of the desired random field for the specified frequencies. The algorithm is applied to synthetic examples corresponding to different spatial correlation models. The properties of these models and of the algorithm are discussed, highlighting its computational efficiency, accuracy and versatility.
引用
收藏
页码:1583 / 1592
页数:10
相关论文
共 50 条
  • [1] On Fractional Brownian Motion and Wavelets
    Albeverio, S.
    Jorgensen, P. E. T.
    Paolucci, A. M.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 6 (01) : 33 - 63
  • [2] Amblard PO., 2013, SEMIN C, V28, P65
  • [3] [Anonymous], 1997, FRACTALS CHAOS GEOLO, DOI DOI 10.1017/CBO9781139174695
  • [4] [Anonymous], 1989, WAVELETS
  • [5] MODELING OF NATURAL TERRAIN BASED ON FRACTAL GEOMETRY
    ARAKAWA, K
    KROTKOV, E
    [J]. SYSTEMS AND COMPUTERS IN JAPAN, 1994, 25 (11) : 99 - 113
  • [6] Arroyo D, 2015, MATH GEOSCI, V47, P955, DOI 10.1007/s11004-014-9558-6
  • [7] Controlled diffusion models for optimal dividend pay-out
    Asmussen, S
    Taksar, M
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 1997, 20 (01) : 1 - 15
  • [8] Asmussen S., 1998, STOCHASTIC SIMULATIO
  • [9] Beran J., 1994, Statistics for Long-Memory Processes
  • [10] FRACTAL FEATURE ANALYSIS AND CLASSIFICATION IN MEDICAL IMAGING
    CHEN, CC
    DAPONTE, JS
    FOX, MD
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1989, 8 (02) : 133 - 142