Thermal conductivity of bulk electrodeposited nanocrystalline nickel

被引:13
作者
Cho, H. J. [1 ]
Wang, S. [1 ]
Zhou, Y. [1 ]
Palumbo, G. [2 ]
Erb, U. [1 ]
机构
[1] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St,Suite 177, Toronto, ON M5S 3E4, Canada
[2] Integran Technol Inc, 6300 Northam Dr, Mississauga, ON L4V 1H7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Thermo-electrical transport; Wiedemann-Franz law; Lorenz number; Nanocrystalline Ni; Impurity effects; GRAIN-BOUNDARIES; PLASTIC-DEFORMATION; YOUNGS MODULUS; NI; TRANSITION; STABILITY; FILMS; RESISTIVITY; HYDROGEN; BEHAVIOR;
D O I
10.1016/j.ijheatmasstransfer.2016.04.068
中图分类号
O414.1 [热力学];
学科分类号
摘要
Room temperature thermoelectrical transport was investigated on a series of thick (300 gm), fully-dense electrodeposited nanocrystalline Ni materials with grain sizes below 50 nm. Strong grain size effects were observed on both electrical resistivity and thermal conductivity. As grain size decreased from 47 to 28 nm, the nanocrystalline Ni exhibited an increase in electrical resistivity from 9.42 to 10.2 mu Omega cm, and a reduction of thermal conductivity from 74.7 to 67.3 W/m-K, respectively. Analysis shows that for the nanocrystalline Ni, the change in the values of thermal conductivity and electrical resistivity is mainly due to grain boundary contributions with limited impurity effects. Furthermore, the thermoelectrical transport behavior agrees well with the Wiedemann-Franz law. The corresponding Lorenz numbers varied only in a narrow range from 2.30 x 10(-8) to 2.37 x 10(-8) W Omega/K-2 for the nanocrystalline Ni and were well within the experimentally measured value range of 2.12-2.44 x 10(-8) W Omega/K-2(2 for coarse grained Ni reported in the literature. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:490 / 496
页数:7
相关论文
共 67 条
[1]  
[Anonymous], 2010, E146107 ASTM
[2]   MAGNETIC-PROPERTIES OF BULK NANOCRYSTALLINE NICKEL [J].
AUS, MJ ;
SZPUNAR, B ;
ELSHERIK, AM ;
ERB, U ;
PALUMBO, G ;
AUST, KT .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 27 (11) :1639-1643
[3]   Annealing effects on mechanical and transport properties of Ni and Ni-alloy electrodeposits [J].
Borca-Tasciuc, Theodorian ;
Borca-Tasciuc, Diana-Andra ;
Graham, Samuel ;
Goods, Steven H. ;
Kelly, James J. ;
Yang, Nancy Y. C. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2006, 15 (05) :1051-1059
[4]   On the intrinsic ductility of electrodeposited nanocrystalline metals [J].
Brooks, I. ;
Palumbo, G. ;
Hibbard, G. D. ;
Wang, Zhirui ;
Erb, U. .
JOURNAL OF MATERIALS SCIENCE, 2011, 46 (24) :7713-7724
[5]   Thin film non-noble transition metal thermophysical properties [J].
Caffrey, AP ;
Hopkins, PE ;
Klopf, JM ;
Norris, PM .
MICROSCALE THERMOPHYSICAL ENGINEERING, 2005, 9 (04) :365-377
[6]  
Callister W.D., 2007, FUNDAMENTALS MAT SCI, P709
[7]   Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni-Fe [J].
Chan, T. ;
Zhou, Y. ;
Brooks, I. ;
Palumbo, G. ;
Erb, U. .
JOURNAL OF MATERIALS SCIENCE, 2014, 49 (10) :3847-3859
[8]   ON THE VALIDITY OF THE HALL-PETCH RELATIONSHIP IN NANOCRYSTALLINE MATERIALS [J].
CHOKSHI, AH ;
ROSEN, A ;
KARCH, J ;
GLEITER, H .
SCRIPTA METALLURGICA, 1989, 23 (10) :1679-1683
[9]   DEVIATIONS FROM HALL-PETCH BEHAVIOR IN AS-PREPARED NANOCRYSTALLINE NICKEL [J].
ELSHERIK, AM ;
ERB, U ;
PALUMBO, G ;
AUST, KT .
SCRIPTA METALLURGICA ET MATERIALIA, 1992, 27 (09) :1185-1188
[10]  
ELSHERIK AM, 1992, MATER RES SOC SYMP P, V238, P727