Structural changes associated with the acute thermal instability of Rubisco activase

被引:43
作者
Barta, Csengele [1 ]
Dunkle, Alison M. [2 ]
Wachter, Rebekka M. [2 ]
Salvucci, Michael E. [1 ]
机构
[1] USDA ARS, Arid Land Agr Res Ctr, Maricopa, AZ 85139 USA
[2] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
基金
美国能源部;
关键词
Photosynthetic CO2 fixation; Heat stress; Thermal stability; Calvin cycle; Adenine nucleotides; Magnesium ions; PROTEIN SECONDARY STRUCTURE; CIRCULAR-DICHROISM SPECTRA; MODERATE HEAT-STRESS; RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE; POSSIBLE MECHANISM; HIGH-TEMPERATURES; LEAF TEMPERATURE; PHOTOSYNTHESIS; ARABIDOPSIS; LEAVES;
D O I
10.1016/j.abb.2010.04.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inhibition of photosynthesis by heat has been linked to the instability of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) chaperone, Rubisco activase. Examination of the recombinant enzyme showed that ADP and ATP protected against inactivation, whereas Mg2+ promoted inactivation. Heating caused aggregation of Rubisco activase characterized by disruption of secondary structure content and formation of insoluble protein. In contrast, incubation at room temperature without nucleotide caused the active similar to 660 kDa protein to form a soluble, but inactive aggregate of >2 x 10(6) Da. Circular dichroism (CD) spectroscopy and fluorescence established that structural perturbations in the aggregate did not reduce alpha-helical content significantly. Differences in the thermal stability between wild type and mutant Rubisco activase were observed for the recombinant proteins and when the proteins were expressed in transgenic Arabidopsis. That the sensitivity of these plants to heat differs indicates that the thermal instability of Rubisco activase is a main determinant of the temperature-sensitivity of photosynthesis. Published by Elsevier Inc.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 44 条
[1]   Structure and function of Rubisco [J].
Andersson, Inger ;
Backlund, Anders .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2008, 46 (03) :275-291
[2]   DISSOCIATION OF SUPRAMOLECULAR COMPLEXES IN CHLOROPLAST MEMBRANES - A MANIFESTATION OF HEAT DAMAGE TO THE PHOTOSYNTHETIC APPARATUS [J].
ARMOND, PA ;
BJORKMAN, O ;
STAEHELIN, LA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 601 (03) :433-442
[3]   PHOTOSYNTHETIC RESPONSE AND ADAPTATION TO TEMPERATURE IN HIGHER-PLANTS [J].
BERRY, J ;
BJORKMAN, O .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1980, 31 :491-543
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]   Heat sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron transport [J].
Bukhov, NG ;
Wiese, C ;
Neimanis, S ;
Heber, U .
PHOTOSYNTHESIS RESEARCH, 1999, 59 (01) :81-93
[6]   A METHOD FOR THE DETERMINATION OF INORGANIC-PHOSPHATE IN THE PRESENCE OF LABILE ORGANIC PHOSPHATE AND HIGH-CONCENTRATIONS OF PROTEIN - APPLICATION TO LENS ATPASES [J].
CHIFFLET, S ;
TORRIGLIA, A ;
CHIESA, R ;
TOLOSA, S .
ANALYTICAL BIOCHEMISTRY, 1988, 168 (01) :1-4
[7]   Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2 [J].
Crafts-Brandner, SJ ;
Salvucci, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (24) :13430-13435
[8]   Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state [J].
Crafts-Brandner, SJ ;
Law, RD .
PLANTA, 2000, 212 (01) :67-74
[9]   Growth and photosynthesis under high and low irradiance of Arabidopsis thaliana antisense mutants with reduced ribulose-1,5-bisphosphate carboxylase/oxygenase activase content [J].
Eckardt, NA ;
Snyder, GW ;
Portis, AR ;
Ogren, WL .
PLANT PHYSIOLOGY, 1997, 113 (02) :575-586
[10]   Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco [J].
Feller, U ;
Crafts-Brandner, SJ ;
Salvucci, ME .
PLANT PHYSIOLOGY, 1998, 116 (02) :539-546