Robust Multi-View Representation Learning

被引:0
|
作者
Venkatesan, Sibi [1 ]
Miller, James K. [1 ]
Dubrawski, Artur [1 ]
机构
[1] Carnegie Mellon Univ, AutonLab, Robot Inst, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
来源
THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE | 2020年 / 34卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view data has become ubiquitous, especially with multi-sensor systems like self-driving cars or medical patient-side monitors. We propose two methods to approach robust multi-view representation learning with the aim of leveraging local relationships between views. The first is an extension of Canonical Correlation Analysis (CCA) where we consider multiple one-vs-rest CCA problems, one for each view. We use a group-sparsity penalty to encourage finding local relationships. The second method is a straightforward extension of a multi-view AutoEncoder with view-level drop-out. We demonstrate the effectiveness of these methods in simple synthetic experiments. We also describe heuristics and extensions to improve and/or expand on these methods.
引用
收藏
页码:13939 / 13940
页数:2
相关论文
共 50 条
  • [31] Multi-view representation learning in multi-task scene
    Lu, Run-kun
    Liu, Jian-wei
    Lian, Si-ming
    Zuo, Xin
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (14): : 10403 - 10422
  • [32] Multi-View Network Representation Learning Algorithm Research
    Ye, Zhonglin
    Zhao, Haixing
    Zhang, Ke
    Zhu, Yu
    ALGORITHMS, 2019, 12 (03)
  • [33] Smooth representation learning from multi-view data
    Huang, Shudong
    Liu, Yixi
    Cai, Hecheng
    Tan, Yuze
    Tang, Chenwei
    Lv, Jiancheng
    INFORMATION FUSION, 2023, 100
  • [34] Joint Multi-View Representation Learning and Image Tagging
    Xue, Zhe
    Li, Guorong
    Huang, Qingming
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 1366 - 1372
  • [35] Multi-View Representation Learning With Deep Gaussian Processes
    Sun, Shiliang
    Dong, Wenbo
    Liu, Qiuyang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4453 - 4468
  • [36] Learning Multi-view Generator Network for Shared Representation
    Han, Tian
    Xing, Xianglei
    Wu, Ying Nian
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2062 - 2068
  • [37] Multi-view Graph Representation Learning Beyond Homophily
    Lin, Bei
    Li, You
    Gui, Ning
    Xu, Zhuopeng
    Yu, Zhiwu
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (08)
  • [38] Learning Smooth Representation for Multi-view Subspace Clustering
    Huang, Shudong
    Liu, Yixi
    Ren, Yazhou
    Tsang, Ivor W.
    Xu, Zenglin
    Lv, Jiancheng
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3421 - 3429
  • [39] Joint representation learning for multi-view subspace clustering
    Zhang, Guang-Yu
    Zhou, Yu-Ren
    Wang, Chang-Dong
    Huang, Dong
    He, Xiao-Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 166
  • [40] Representation Learning in Multi-view Clustering: A Literature Review
    Chen, Man-Sheng
    Lin, Jia-Qi
    Li, Xiang-Long
    Liu, Bao-Yu
    Wang, Chang-Dong
    Huang, Dong
    Lai, Jian-Huang
    DATA SCIENCE AND ENGINEERING, 2022, 7 (03) : 225 - 241