Nanoscale Infrared Spectroscopy and Imaging of Catalytic Reactions in Cu2O Crystals

被引:17
作者
Ni, G. X. [2 ]
Chen, S. [1 ]
Sunku, S. S. [2 ,3 ]
Sternbach, A. [2 ]
McLeod, A. S. [2 ]
Xiong, L. [2 ]
Fogler, M. M. [4 ]
Chen, G. [1 ]
Basov, D. N. [2 ]
机构
[1] Honda Res Inst USA Inc, San Jose, CA 95134 USA
[2] Columbia Univ, Dept Phys, New York, NY 10027 USA
[3] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
[4] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
CO2; reduction; Cu2O catalysis; scanning nano-optical imaging; infrared nanospectroscopy; s-SNOM; CARBON-DIOXIDE; ELECTROCATALYTIC REDUCTION; OXIDATION-STATE; CO2; NANOPARTICLES; CONVERSION; ELECTROREDUCTION;
D O I
10.1021/acsphotonics.9b01704
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Many of the existing electrochemical catalysts suffer from poor selectivity, instability, and low exchange current densities. These shortcomings call for a comprehensive exploration of the catalytic processes at the fundamental nanometer length scale levels. Here we exploit infrared (IR) nanoimaging and nanospectroscopy to directly visualize catalytic reactions on the surface of Cu2O polyhedral single crystals with nanoscale spatial resolution. Nano-IR data revealed signatures of this common catalyst after electrochemical reduction of carbon dioxides (CO2). We discuss the utility of nano-IR methods for surface/facet engineering of efficient electrochemical catalysts.
引用
收藏
页码:576 / 580
页数:5
相关论文
共 41 条
[1]   Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex [J].
Angamuthu, Raja ;
Byers, Philip ;
Lutz, Martin ;
Spek, Anthony L. ;
Bouwman, Elisabeth .
SCIENCE, 2010, 327 (5963) :313-315
[2]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[3]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[4]   Biological imaging with a near-field optical setup [J].
Denyer, M ;
Micheletto, R ;
Nakajima, K ;
Hara, M ;
Okazaki, S .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2003, 3 (06) :496-502
[5]   Role of Subsurface Oxygen on Cu Surfaces for CO2 Electrochemical Reduction [J].
Fields, Meredith ;
Hong, Xin ;
Norskov, Jens K. ;
Chan, Karen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (28) :16209-16215
[6]   Size-Dependent Electrocatalytic Reduction of CO2 over Pd Nanoparticles [J].
Gao, Dunfeng ;
Zhou, Hu ;
Wang, Jing ;
Miao, Shu ;
Yang, Fan ;
Wang, Guoxiong ;
Wang, Jianguo ;
Bao, Xinhe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (13) :4288-4291
[7]   Shape regulation of high-index facet nanoparticles by dealloying [J].
Huang, Liliang ;
Liu, Mohan ;
Lin, Haixin ;
Xu, Yaobin ;
Wu, Jinsong ;
Dravid, Vinayak P. ;
Wolverton, Chris ;
Mirkin, Chad A. .
SCIENCE, 2019, 365 (6458) :1159-+
[8]   Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction [J].
Jiang, Kun ;
Sandberg, Robert B. ;
Akey, Austin J. ;
Liu, Xinyan ;
Bell, David C. ;
Norskov, Jens K. ;
Chan, Karen ;
Wang, Haotian .
NATURE CATALYSIS, 2018, 1 (02) :111-119
[9]   Nano-FTIR microscopy and spectroscopy studies of atmospheric corrosion with a spatial resolution of 20 nm [J].
Johnson, C. Magnus ;
Boehmler, Miriam .
CORROSION SCIENCE, 2016, 108 :60-65
[10]   Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons [J].
Kas, Recep ;
Kortlever, Ruud ;
Milbrat, Alexander ;
Koper, Marc T. M. ;
Mul, Guido ;
Baltrusaitis, Jonas .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (24) :12194-12201