A design-based model of the aortic valve for fluid-structure interaction

被引:17
|
作者
Kaiser, Alexander D. [1 ,2 ,3 ]
Shad, Rohan [3 ,4 ]
Hiesinger, William [3 ,4 ]
Marsden, Alison L. [1 ,2 ,3 ,5 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Pediat Cardiol, Stanford, CA 94305 USA
[3] Stanford Cardiovasc Inst, Stanford, CA 94305 USA
[4] Stanford Univ, Dept Cardiothorac Surg, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Aortic valve; Aortic valve mechanics; Immersed boundary method; Aortic valve fluid-structure interaction; Aortic valve modeling; Heart valve modeling; BIAXIAL MECHANICAL-PROPERTIES; IMMERSED BOUNDARY MODEL; HEART-VALVE; PART I; DYNAMICS; CUSP; STRESS;
D O I
10.1007/s10237-021-01516-7
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
This paper presents a new method for modeling the mechanics of the aortic valve and simulates its interaction with blood. As much as possible, the model construction is based on first principles, but such that the model is consistent with experimental observations. We require that tension in the leaflets must support a pressure, then derive a system of partial differential equations governing its mechanical equilibrium. The solution to these differential equations is referred to as the predicted loaded configuration; it includes the loaded leaflet geometry, fiber orientations and tensions needed to support the prescribed load. From this configuration, we derive a reference configuration and constitutive law. In fluid-structure interaction simulations with the immersed boundary method, the model seals reliably under physiological pressures and opens freely over multiple cardiac cycles. Further, model closure is robust to extreme hypo- and hypertensive pressures. Then, exploiting the unique features of this model construction, we conduct experiments on reference configurations, constitutive laws and gross morphology. These experiments suggest the following conclusions: (1) The loaded geometry, tensions and tangent moduli primarily determine model function. (2) Alterations to the reference configuration have little effect if the predicted loaded configuration is identical. (3) The leaflets must have sufficiently nonlinear material response to function over a variety of pressures. (4) Valve performance is highly sensitive to free edge length and leaflet height. These conclusions suggest appropriate gross morphology and material properties for the design of prosthetic aortic valves. In future studies, our aortic valve modeling framework can be used with patient-specific models of vascular or cardiac flow.
引用
收藏
页码:2413 / 2435
页数:23
相关论文
共 50 条
  • [21] A coupled mitral valve-left ventricle model with fluid-structure interaction
    Gao, Hao
    Feng, Liuyang
    Qi, Nan
    Berry, Colin
    Griffith, Boyce E.
    Luo, Xiaoyu
    MEDICAL ENGINEERING & PHYSICS, 2017, 47 : 128 - 136
  • [22] Fluid-Structure Interaction Analysis on the Influence of the Aortic Valve Stent Leaflet Structure in Hemodynamics
    Liu, Xiangkun
    Zhang, Wen
    Ye, Ping
    Luo, Qiyi
    Chang, Zhaohua
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [23] Fluid-structure interaction modeling of aortic valve stenosis at different heart rates
    Bahraseman, Hamidreza Ghasemi
    Languri, Ehsan Mohseni
    Yahyapourjalaly, Niloofar
    Espino, Daniel M.
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2016, 18 (03) : 11 - 20
  • [24] A three-dimensional computational analysis of fluid-structure interaction in the aortic valve
    De Hart, J
    Peters, GWM
    Schreurs, PJG
    Baaijens, FPT
    JOURNAL OF BIOMECHANICS, 2003, 36 (01) : 103 - 112
  • [25] Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve
    Kemp, I.
    Dellimore, K.
    Rodriguez, R.
    Scheffer, C.
    Blaine, D.
    Weich, H.
    Doubell, A.
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2013, 36 (03) : 363 - 373
  • [26] Fluid-structure interaction analysis of a healthy aortic valve and its surrounding haemodynamics
    Yin, Zhongjie
    Armour, Chloee
    Kandail, Harkamaljot
    O'Regan, Declan P.
    Bahrami, Toufan
    Mirsadraee, Saeed
    Pirola, Selene
    Xu, Xiao Yun
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2024, 40 (11)
  • [27] Bioprosthetic Valve Size Selection to Optimize Aortic Valve Replacement Surgical Outcome: A Fluid-Structure Interaction Modeling Study
    Li, Caili
    Tang, Dalin
    Yao, Jing
    Baird, Christopher
    Sun, Haoliang
    Gong, Chanjuan
    Ma, Luyao
    Zhang, Yanjuan
    Wang, Liang
    Yu, Han
    Yang, Chun
    Shao, Yongfeng
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 127 (01): : 159 - 174
  • [28] Computational haemodynamics for pulmonary valve replacement by means of a reduced fluid-structure interaction model
    Criseo, Elisabetta
    Fumagalli, Ivan
    Quarteroni, Alfio
    Marianeschi, Stefano Maria
    Vergara, Christian
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2024, 40 (09)
  • [29] A fully coupled fluid-structure interaction model of the secondary lymphatic valve
    Wilson, John T.
    Edgar, Lowell T.
    Prabhakar, Saurabh
    Horner, Marc
    van Loon, Raoul
    Moore, James E.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2018, 21 (16) : 813 - 823
  • [30] A two-dimensional fluid-structure interaction model of the aortic value
    De Hart, J
    Peters, GWM
    Schreurs, PJG
    Baaijens, FPT
    JOURNAL OF BIOMECHANICS, 2000, 33 (09) : 1079 - 1088