Design of stable metabolic networks

被引:0
作者
Di Maggio, Jimena [1 ]
Blanco, Anibal M. [1 ]
Alberto Bandoni, J. [1 ]
Diaz Ricci, Juan Carlos [2 ]
Soledad Diaz, M. [1 ]
机构
[1] Univ Nacl Sur CONICET, Planta Piloto Ingn Quim PLAPIQUI, Camino La Carrindanga Km 7, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[2] Inst Super Invest Biol INSIBIO UNT CONICET, San Miguel De Tucuman, Tucuman, Argentina
来源
ENGINEERING IN LIFE SCIENCES | 2017年 / 17卷 / 08期
关键词
Eigenvalue optimization; Metabolic networks; Non-linear dynamic models; Optimal design; Stability; ESCHERICHIA-COLI; ENZYME INTERMEDIATE; STEADY-STATES; OPTIMIZATION; STABILITY; GLYCOLYSIS; MODELS;
D O I
10.1002/elsc.201700065
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In this work, we propose eigenvalue optimization combined with Lyapunov theory concepts to ensure stability of theEmbden-Meyerhof-Parnas pathway, the pentosephosphate pathway, the phosphotransferase system and fermentation reactions of Escherichia coli. We address the design of a metabolic network for the maximization of different metabolite production rates. The first case study focuses on serine production, based on amodel that consists of 18 differential equations corresponding to dynamic mass balances for extracellular glucose and intracellular metabolites, and thirty kinetic rate expressions. A second case study addresses the design problem to maximize ethanol production, based on a dynamic model that involves mass balances for 25 metabolites and 38 kinetic rate equations. The nonlinear optimization problem including stability constraints has been solvedwith reduced space Successive Quadratic Programming techniques. Numerical results provide useful insights on the stability properties of the studied kinetic models.
引用
收藏
页码:908 / 915
页数:8
相关论文
共 24 条
[1]   Regulation and control of compartmentalized glycolysis in bloodstream form Trypanosoma brucei [J].
Bakker, BM ;
Westerhoff, HV ;
Michels, PAM .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1995, 27 (05) :513-525
[2]   Eigenvalue optimization-based formulations for nonlinear dynamics and control problems [J].
Blanco, Anibal M. ;
Bandoni, J. Alberto .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2007, 46 (11) :1192-1199
[3]   Optimization of metabolic pathways under stability considerations [J].
Chang, YJ ;
Sahinidis, NV .
COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (03) :467-479
[4]   Dynamic modeling of the central carbon metabolism of Escherichia coli [J].
Chassagnole, C ;
Noisommit-Rizzi, N ;
Schmid, JW ;
Mauch, K ;
Reuss, M .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (01) :53-73
[5]   Global sensitivity analysis in dynamic metabolic networks [J].
Di Maggio, J. ;
Diaz Ricci, J. C. ;
Diaz, M. S. .
COMPUTERS & CHEMICAL ENGINEERING, 2010, 34 (05) :770-781
[6]   Parameter estimation in kinetic models for large scale biotechnological systems with advanced mathematical programming techniques [J].
Di Maggio, Jimena ;
Paulo, Cecilia ;
Estrada, Vanina ;
Perotti, Nora ;
Diaz Ricci, Juan C. ;
Soledad Diaz, M. .
BIOCHEMICAL ENGINEERING JOURNAL, 2014, 83 :104-115
[7]   FORMULATION OF STRUCTURED GROWTH MODELS [J].
FREDRICKSON, AG .
BIOTECHNOLOGY AND BIOENGINEERING, 1976, 18 (10) :1481-1486
[8]   Steady state optimization with guaranteed stability of a tryptophan biosynthesis model [J].
Gerhard, Johannes ;
Moennigmann, Martin ;
Marquardt, Wolfgang .
COMPUTERS & CHEMICAL ENGINEERING, 2008, 32 (12) :2914-2919
[9]   Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems [J].
Haddad, WM ;
Chellaboina, V .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2005, 6 (01) :35-65
[10]   Studies on glycolysis .1. Multiple steady states in bacterial glycolysis [J].
Hatzimanikatis, V ;
Bailey, JE .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (15) :2579-2588