Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

被引:28
|
作者
Wu, Jiayi [1 ,2 ]
Ma, Yong-Bei [2 ]
Congdon, Charles [3 ]
Brett, Bevin [3 ]
Chen, Shuobing [1 ,2 ]
Xu, Yaofang [2 ,4 ]
Ouyang, Qi [1 ,5 ]
Mao, Youdong [1 ,2 ,6 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Inst Condensed Matter Phys,Ctr Quantitat Biol, Beijing, Peoples R China
[2] Dana Farber Canc Inst, Intel Parallel Comp Ctr Struct Biol, Boston, MA 02115 USA
[3] Intel Corp, Software & Serv Grp, Santa Clara, CA USA
[4] Peking Univ, Hlth Sci Ctr, Dept Biophys, Beijing, Peoples R China
[5] Peking Univ, Peking Tsinghua Joint Ctr Life Sci, Beijing, Peoples R China
[6] Harvard Med Sch, Dept Microbiol & Immunobiol, Boston, MA USA
来源
PLOS ONE | 2017年 / 12卷 / 08期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
NONLINEAR DIMENSIONALITY REDUCTION; MICROSCOPY; CLASSIFICATION; PROJECTION; MACROMOLECULES; IMAGES; SPARX; SUITE; XMIPP;
D O I
10.1371/journal.pone.0182130
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] Data-driven determination of number of discrete conformations in single-particle cryo-EM
    Zhou, Ye
    Moscovich, Amit
    Bartesaghi, Alberto
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 221
  • [32] Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN
    Kinman, Laurel F.
    Powell, Barrett M.
    Zhong, Ellen D.
    Berger, Bonnie
    Davis, Joseph H.
    NATURE PROTOCOLS, 2023, 18 (02) : 319 - +
  • [33] Single-particle cryo-EM data acquisition by using direct electron detection camera
    Wu, Shenping
    Armache, Jean-Paul
    Cheng, Yifan
    MICROSCOPY, 2016, 65 (01) : 35 - 41
  • [34] An Unsupervised Iteractive Model for Single-Particle Cryo-EM Image Denoising Based on Siamese Neural Network
    Zheng, Wangjie
    Yang, Yang
    2020 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2020, : 2390 - 2394
  • [35] Uncovering structural ensembles from single-particle cryo-EM data using cryoDRGN
    Laurel F. Kinman
    Barrett M. Powell
    Ellen D. Zhong
    Bonnie Berger
    Joseph H. Davis
    Nature Protocols, 2023, 18 : 319 - 339
  • [36] Single-particle cryo-EM: alternative schemes to improve dose efficiency
    Zhang, Yue
    Lu, Peng-Han
    Rotunno, Enzo
    Troiani, Filippo
    van Schayck, J. Paul
    Tavabi, Amir H.
    Dunin-Borkowski, Rafal E.
    Grillo, Vincenzo
    Peters, Peter J.
    Ravelli, Raimond B. G.
    JOURNAL OF SYNCHROTRON RADIATION, 2021, 28 : 1343 - 1356
  • [37] Single-particle Cryo-EM and molecular dynamics simulations: A perfect match
    Bock, Lars, V
    Igaev, Maxim
    Grubmueller, Helmut
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2024, 86
  • [38] goCTF: Geometrically optimized CTF determination for single-particle cryo-EM
    Su, Min
    JOURNAL OF STRUCTURAL BIOLOGY, 2019, 205 (01) : 22 - 29
  • [39] GraDeR: Membrane Protein Complex Preparation for Single-Particle Cryo-EM
    Hauer, Florian
    Gerle, Christoph
    Fischer, Niels
    Oshima, Atsunori
    Shinzawa-Itoh, Kyoko
    Shimada, Satoru
    Yokoyama, Ken
    Fujiyoshi, Yoshinori
    Stark, Holger
    STRUCTURE, 2015, 23 (09) : 1769 - 1775
  • [40] Functionalized graphene grids with various charges for single-particle cryo-EM
    Lu, Ye
    Liu, Nan
    Liu, Yongbo
    Zheng, Liming
    Yang, Junhao
    Wang, Jia
    Jia, Xia
    Zi, Qinru
    Peng, Hailin
    Rao, Yu
    Wang, Hong-Wei
    NATURE COMMUNICATIONS, 2022, 13 (01)