Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

被引:28
|
作者
Wu, Jiayi [1 ,2 ]
Ma, Yong-Bei [2 ]
Congdon, Charles [3 ]
Brett, Bevin [3 ]
Chen, Shuobing [1 ,2 ]
Xu, Yaofang [2 ,4 ]
Ouyang, Qi [1 ,5 ]
Mao, Youdong [1 ,2 ,6 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Inst Condensed Matter Phys,Ctr Quantitat Biol, Beijing, Peoples R China
[2] Dana Farber Canc Inst, Intel Parallel Comp Ctr Struct Biol, Boston, MA 02115 USA
[3] Intel Corp, Software & Serv Grp, Santa Clara, CA USA
[4] Peking Univ, Hlth Sci Ctr, Dept Biophys, Beijing, Peoples R China
[5] Peking Univ, Peking Tsinghua Joint Ctr Life Sci, Beijing, Peoples R China
[6] Harvard Med Sch, Dept Microbiol & Immunobiol, Boston, MA USA
来源
PLOS ONE | 2017年 / 12卷 / 08期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
NONLINEAR DIMENSIONALITY REDUCTION; MICROSCOPY; CLASSIFICATION; PROJECTION; MACROMOLECULES; IMAGES; SPARX; SUITE; XMIPP;
D O I
10.1371/journal.pone.0182130
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
引用
收藏
页数:25
相关论文
共 50 条
  • [11] Single-particle cryo-EM: beyond the resolution
    Armache, Jean-Paul
    Cheng, Yifan
    NATIONAL SCIENCE REVIEW, 2019, 6 (05) : 864 - 866
  • [12] Cryo-EM and Single-Particle Analysis with Scipion
    Jimenez-Moreno, A.
    del Cano, L.
    Martinez, M.
    Ramirez-Aportela, E.
    Cuervo, A.
    Melero, R.
    Sanchez-Garcia, R.
    Strelak, D.
    Fernandez-Gimenez, E.
    de Isidro-Gomez, F. P.
    Herreros, D.
    Conesa, P.
    Fonseca, Y.
    Maluenda, D.
    Jimenez de la Morena, J.
    Macias, J. R.
    Losana, P.
    Marabini, R.
    Carazo, J. M.
    Sorzano, C. O. S.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (171):
  • [13] Seeing Atoms by Single-Particle Cryo-EM
    Bai, Xiao-chen
    TRENDS IN BIOCHEMICAL SCIENCES, 2021, 46 (04) : 253 - 254
  • [14] Particle migration analysis in iterative classification of cryo-EM single-particle data
    Chen, Bo
    Shen, Bingxin
    Frank, Joachim
    JOURNAL OF STRUCTURAL BIOLOGY, 2014, 188 (03) : 267 - 273
  • [15] Consistency Criterion for Particle Sorting in Single-Particle Cryo-EM
    Asarnow, Daniel
    Cheng, Yifan
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 418A - 418A
  • [16] CryoGAN: A New Reconstruction Paradigm for Single-Particle Cryo-EM Via Deep Adversarial Learning
    Gupta, Harshit
    McCann, Michael T.
    Donati, Laurene
    Unser, Michael
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2021, 7 (07) : 759 - 774
  • [17] Recent algorithmic advances for single-particle cryo-EM
    Punjani, Ali
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : A405 - A405
  • [18] Dealing with dynamics and disorder in single-particle cryo-EM
    Hummer, Gerhard
    Cossio, Pilar
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [19] Principles of cryo-EM single-particle image processing
    Sigworth, Fred J.
    MICROSCOPY, 2016, 65 (01) : 57 - 67
  • [20] Frealign: An Exploratory Tool for Single-Particle Cryo-EM
    Grigorieff, N.
    RESOLUTION REVOLUTION: RECENT ADVANCES IN CRYOEM, 2016, 579 : 191 - 226