Massively parallel unsupervised single-particle cryo-EM data clustering via statistical manifold learning

被引:28
|
作者
Wu, Jiayi [1 ,2 ]
Ma, Yong-Bei [2 ]
Congdon, Charles [3 ]
Brett, Bevin [3 ]
Chen, Shuobing [1 ,2 ]
Xu, Yaofang [2 ,4 ]
Ouyang, Qi [1 ,5 ]
Mao, Youdong [1 ,2 ,6 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Artificial Microstruct & Mesoscop P, Inst Condensed Matter Phys,Ctr Quantitat Biol, Beijing, Peoples R China
[2] Dana Farber Canc Inst, Intel Parallel Comp Ctr Struct Biol, Boston, MA 02115 USA
[3] Intel Corp, Software & Serv Grp, Santa Clara, CA USA
[4] Peking Univ, Hlth Sci Ctr, Dept Biophys, Beijing, Peoples R China
[5] Peking Univ, Peking Tsinghua Joint Ctr Life Sci, Beijing, Peoples R China
[6] Harvard Med Sch, Dept Microbiol & Immunobiol, Boston, MA USA
来源
PLOS ONE | 2017年 / 12卷 / 08期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
NONLINEAR DIMENSIONALITY REDUCTION; MICROSCOPY; CLASSIFICATION; PROJECTION; MACROMOLECULES; IMAGES; SPARX; SUITE; XMIPP;
D O I
10.1371/journal.pone.0182130
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Structural heterogeneity in single-particle cryo-electron microscopy (cryo-EM) data represents a major challenge for high-resolution structure determination. Unsupervised classification may serve as the first step in the assessment of structural heterogeneity. However, traditional algorithms for unsupervised classification, such as K-means clustering and maximum likelihood optimization, may classify images into wrong classes with decreasing signal-to-noise-ratio (SNR) in the image data, yet demand increased computational costs. Overcoming these limitations requires further development of clustering algorithms for high-performance cryo-EM data processing. Here we introduce an unsupervised single-particle clustering algorithm derived from a statistical manifold learning framework called generative topographic mapping (GTM). We show that unsupervised GTM clustering improves classification accuracy by about 40% in the absence of input references for data with lower SNRs. Applications to several experimental datasets suggest that our algorithm can detect subtle structural differences among classes via a hierarchical clustering strategy. After code optimization over a high-performance computing (HPC) environment, our software implementation was able to generate thousands of reference-free class averages within hours in a massively parallel fashion, which allows a significant improvement on ab initio 3D reconstruction and assists in the computational purification of homogeneous datasets for high-resolution visualization.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Continuous changes in structure mapped by manifold embedding of single-particle data in cryo-EM
    Frank, Joachim
    Ourmazd, Abbas
    METHODS, 2016, 100 : 61 - 67
  • [2] Unsupervised particle sorting for high-resolution single-particle cryo-EM
    Zhou, Ye
    Moscovich, Amit
    Bendory, Tamir
    Bartesaghi, Alberto
    INVERSE PROBLEMS, 2020, 36 (04)
  • [3] Towards automating single-particle cryo-EM data acquisition
    Dienemann, Christian
    IUCRJ, 2023, 10 : 4 - 5
  • [4] Single-particle cryo-EM analysis of the purinosome
    Calise, S. J.
    Molfino, J.
    Dickinson, M. S.
    Quispe, J.
    Kollman, J. M.
    MOLECULAR BIOLOGY OF THE CELL, 2023, 34 (02) : 675 - 676
  • [5] A potential difference for single-particle cryo-EM
    Rosenthal, Peter B.
    IUCRJ, 2019, 6 : 988 - 989
  • [6] Single-particle cryo-EM: beyond the resolution
    Jean-Paul Armache
    Yifan Cheng
    National Science Review, 2019, 6 (05) : 864 - 866
  • [7] Single-particle cryo-EM at atomic resolution
    Nakane, Takanori
    Kotecha, Abhay
    Sente, Andrija
    McMullan, Greg
    Masiulis, Simonas
    Brown, Patricia M. G. E.
    Grigoras, Ioana T.
    Malinauskaite, Lina
    Malinauskas, Tomas
    Miehling, Jonas
    Uchanski, Tomasz
    Yu, Lingbo
    Karia, Dimple
    Pechnikova, Evgeniya V.
    de Jong, Erwin
    Keizer, Jeroen
    Bischoff, Maarten
    McCormack, Jamie
    Tiemeijer, Peter
    Hardwick, Steven W.
    Chirgadze, Dimitri Y.
    Murshudov, Garib
    Aricescu, A. Radu
    Scheres, Sjors H. W.
    NATURE, 2020, 587 (7832) : 152 - +
  • [8] Single-particle cryo-EM at atomic resolution
    Sente, A.
    Nakane, T.
    Kotecha, A.
    Aricescu, A. R.
    Scheres, S. H. W.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2020, 76 : A220 - A220
  • [9] Single-Particle Cryo-EM at Crystallographic Resolution
    Cheng, Yifan
    CELL, 2015, 161 (03) : 450 - 457
  • [10] Single-particle cryo-EM at atomic resolution
    Takanori Nakane
    Abhay Kotecha
    Andrija Sente
    Greg McMullan
    Simonas Masiulis
    Patricia M. G. E. Brown
    Ioana T. Grigoras
    Lina Malinauskaite
    Tomas Malinauskas
    Jonas Miehling
    Tomasz Uchański
    Lingbo Yu
    Dimple Karia
    Evgeniya V. Pechnikova
    Erwin de Jong
    Jeroen Keizer
    Maarten Bischoff
    Jamie McCormack
    Peter Tiemeijer
    Steven W. Hardwick
    Dimitri Y. Chirgadze
    Garib Murshudov
    A. Radu Aricescu
    Sjors H. W. Scheres
    Nature, 2020, 587 : 152 - 156