Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries

被引:242
作者
Zhu, Nan [2 ]
Liu, Wen [1 ]
Xue, Mianqi [2 ]
Xie, Zhuang [2 ]
Zhao, Dan [2 ]
Zhang, Meining [2 ]
Chen, Jitao [1 ]
Cao, Tingbing [2 ]
机构
[1] Peking Univ, Beijing Natl Lab Mol Sci, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
[2] Renmin Univ China, Dept Chem, Beijing 100872, Peoples R China
关键词
Electrospinning; Graphene; Lithium-ion battery; High-rate charging/discharging; ANODE MATERIAL; NANOFIBERS; PERFORMANCE; FABRICATION; STORAGE; NANOPARTICLES; NANOWIRES;
D O I
10.1016/j.electacta.2010.05.029
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Spinel Li4Ti5O12 (LTO) is a promising candidate anode material for Li-ion batteries due to its well-known zero-strain merits. To improve the electronic properties of spinel LTO. which are intrinsically poor, we processed the material into a nanosized architecture to shorten the distance for Li-ion and electron transport using the versatile electrospinning method. Graphene was chosen as an effective carbon coating to improve the surface conductivity of the nanocomposites. The as-prepared graphene-embedded LTO anode material showed improved discharging/charging and cycling properties, particularly at high rates, such as 22 C, which makes the nanocomposite an attractive anode material for applications in electric vehicles. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5813 / 5818
页数:6
相关论文
共 33 条
[1]   Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J].
Cheng, Liang ;
Li, Xi-Li ;
Liu, Hai-Jing ;
Xiong, Huan-Ming ;
Zhang, Ping-Wei ;
Xia, Yong-Yao .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :A692-A697
[2]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[3]   A chemical route to graphene for device applications [J].
Gilje, Scott ;
Han, Song ;
Wang, Minsheng ;
Wang, Kang L. ;
Kaner, Richard B. .
NANO LETTERS, 2007, 7 (11) :3394-3398
[4]   Synthesis of Single Crystalline Spinel LiMn2O4 Nanowires for a Lithium Ion Battery with High Power Density [J].
Hosono, Eiji ;
Kudo, Totsuichi ;
Honma, Itaru ;
Matsuda, Hirofumi ;
Zhou, Haoshen .
NANO LETTERS, 2009, 9 (03) :1045-1051
[5]   Microstructure effect on the electrochemical property of Li4Ti5O12 as an anode material for lithium-ion batteries [J].
Hsiao, Kuang-Che ;
Liao, Shih-Chieh ;
Chen, Jin-Ming .
ELECTROCHIMICA ACTA, 2008, 53 (24) :7242-7247
[6]   Synthesis and Electrode Performance of Nanostructured V2O5 by Using a Carbon Tube-in-Tube as a Nanoreactor and an Efficient Mixed-Conducting Network [J].
Hu, Yong-Sheng ;
Liu, Xi ;
Mueller, Jens-O. ;
Schloegl, Robert ;
Maier, Joachim ;
Su, Dang Sheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (01) :210-214
[7]   The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery [J].
Huang, Junjie ;
Jiang, Zhiyu .
ELECTROCHIMICA ACTA, 2008, 53 (26) :7756-7759
[8]   The synthesis of hollow spherical Li4Ti5O12 by macroemulsion method and its application in Li-ion batteries [J].
Huang, Junjie ;
Jiang, Zhiyu .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (07) :A16-A18
[9]   PREPARATION OF GRAPHITIC OXIDE [J].
HUMMERS, WS ;
OFFEMAN, RE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) :1339-1339
[10]   Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material [J].
Jiang, Chunhai ;
Zhou, Yong ;
Honma, Itaru ;
Kudo, Tetsuichi ;
Zhou, Haoshen .
JOURNAL OF POWER SOURCES, 2007, 166 (02) :514-518