Maximal superintegrability of Benenti systems

被引:16
作者
Blaszak, M
Sergyeyev, A
机构
[1] Adam Mickiewicz Univ, Inst Phys, PL-61614 Poznan, Poland
[2] Silesian Univ Opava, Inst Math, Opava 74601, Czech Republic
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 01期
关键词
D O I
10.1088/0305-4470/38/1/L01
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a class of Hamiltonian systems, naturally arising in the modern theory of separation of variables, we establish their maximal superintegrability by explicitly constructing the additional integrals of motion.
引用
收藏
页码:L1 / L5
页数:5
相关论文
共 19 条
[1]   Maximal superintegrability on N-dimensional curved spaces [J].
Ballesteros, A ;
Herranz, FJ ;
Santander, M ;
Sanz-Gil, T .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (07) :L93-L99
[2]   Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation [J].
Benenti, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) :6578-6602
[3]  
Benenti S., 1993, Differential Geometry and Its Applications, Opava,1992, V1, P163
[4]  
Blaszak M, 2002, J NONLINEAR MATH PHY, V9, P1
[5]   On separability of bi-Hamiltonian chain with degenerated Poisson structures [J].
Blaszak, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3213-3235
[6]  
BLASZAK M, 2003, SEPARABLE BIHAMILTON
[7]   A class of nonconservative Lagrangian systems on Riemannian manifolds [J].
Crampin, M ;
Sarlet, W .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (09) :4313-4326
[8]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[9]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+
[10]   Isochronic potentials and new family of superintegrable systems [J].
Gonera, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (13) :4085-4095