Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation

被引:32
|
作者
Liang, Wenxian [1 ,2 ]
Ni, Lin [2 ,3 ]
Carballar-Lejarazu, Rebeca [4 ]
Zou, Xiaoxing [1 ,2 ]
Sun, Weihong [1 ,2 ]
Wu, Lingjiao [1 ,2 ]
Yuan, Xueyuan [1 ,2 ]
Mao, Yanling [2 ,5 ]
Huang, Wei [2 ,6 ]
Zou, Shuangquan [1 ,2 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Forestry, Fuzhou, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Fujian Coll & Univ Engn Res Inst Conservat & Util, Fuzhou, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Plant Protect, Fuzhou, Fujian, Peoples R China
[4] Univ Calif Irvine, Dept Microbiol & Mol Genet, Irvine, CA 92717 USA
[5] Fujian Agr & Forestry Univ, Coll Resources & Environm, Fuzhou, Fujian, Peoples R China
[6] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
Euscaphis konishii Hayata; Transcriptome; Gene expression; Flavonoid; Biosynthesis; Transport; Transcrip factor; MEDICINAL-PLANTS; JAPONICA; IDENTIFICATION; EXPRESSION; LEAVES; ACID; PROANTHOCYANIDINS; CONSTITUENTS; METABOLISM; GLYCOSIDES;
D O I
10.1186/s12864-018-5354-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BachgroundEuscaphis konishii Hayata, a member of the Staphyleaceae Family, is a plant that has been widely used in Traditional Chinese Medicine and it has been the source for several types of flavonoids. To identify candidate genes involved in flavonoid biosynthesis and accumulation, we analyzed transcriptome data from three E. konishii tissues (leaf, branch and capsule) using Illumina Hiseq 2000 platform.ResultsA total of 91.7, 100.3 and 100.1million clean reads were acquired for the leaf, branch and capsule, respectively; and 85,342 unigenes with a mean length of 893.60bp and N50 length of 1307nt were assembled usingTrinity program. BLASTx analysis allowed to annotate 40,218 unigenes using public protein databases, including NR, KOG/COG/eggNOG, Swiss-Prot, KEGG and GO. A total of 14,291 (16.75%) unigenes were assigned to 128 KEGG pathways, and 900 unigenes were annotated into 22 KEGG secondary metabolites, including flavonoid biosynthesis. The structure enzymes involved in flavonoid biosynthesis, such as phenylalanine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate CoA ligase, shikimate O-hydroxycinnamoyltransferase,coumaroylquinate 3-monooxygenase, caffeoyl-CoA O-methyltransferase, chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3-hydroxylase, flavonoid 3,5-hydroxylase, flavonolsynthese, dihydroflavonol 4-reductase, anthocyanidinreductase, leucoanthocyanidin dioxygenase, leucoanthocyanidin reductase, were identified in the transcriptome data, 40 UDP-glycosyltransferase (UGT), 122 Cytochrome P450 (CYP) and 25 O-methyltransferase (OMT) unigenes were also found. A total of 295 unigenes involved in flavonoid transport and 220 transcription factors (97 MYB, 84 bHLH and 39 WD40) were identified. Furthermore, their expression patterns among different tissues were analyzed by DESeq, the differentially expressed genes may play important roles in tissues-specific synthesis, accumulation and modification of flavonoids.ConclusionWe present here the de novo transcriptome analysis of E. konishii and the identification of candidate genes involved in biosynthesis and accumulation of flavonoid. In general, these results are an important resource for further research on gene expression, genomic and functional genomics in E. konishii and other related species.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Transcriptome Analysis of Aconitum carmichaelii Identifies Genes Involved in Terpenoid, Alkaloid and Phenylpropanoid Biosynthesis
    Gao, Jihai
    Zhang, Dayan
    Hou, Feixia
    Wen, Huan
    Wang, Qihao
    Song, Mingwang
    Peng, Cheng
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2019, 22 (04) : 710 - 720
  • [42] De Novo Transcriptome Sequencing of Ilex cornuta and Analysis of Genes Involved in Triterpenoid Biosynthesis
    Zeng, Hui
    Zhu, Li
    Ma, Liang-Qiong
    Zhang, Wei-Wei
    Xu, Feng
    Liao, Yong-Ling
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2019, 22 (04) : 793 - 800
  • [43] Genome-Wide Identification and Co-Expression Analysis of ARF and IAA Family Genes in Euscaphis konishii: Potential Regulators of Triterpenoids and Anthocyanin Biosynthesis
    Liu, Bobin
    Zhu, Juanli
    Lin, Lina
    Yang, Qixin
    Hu, Bangping
    Wang, Qingying
    Zou, Xiao-Xing
    Zou, Shuang-Quan
    FRONTIERS IN GENETICS, 2022, 12
  • [44] Comparative transcriptome analysis of Sweetpotato (Ipomoea batatas L.) and discovery of genes involved in starch biosynthesis
    Meng Kou
    Zai-Xing Su
    Yun-Gang Zhang
    Qiang Li
    Plant Biotechnology Reports, 2020, 14 : 713 - 723
  • [45] Comparative transcriptome analysis of three chrysanthemums provides insights into flavonoid and terpenoid biosynthesis
    Xu Wang
    Jingjing Zhang
    Zhige Liu
    Shuaibin Wang
    Bisheng Huang
    Zhigang Hu
    Yifei Liu
    Journal of Plant Biology, 2021, 64 : 389 - 401
  • [46] Comparative Transcriptome Analysis Identifies Putative Genes Involved in Dioscin Biosynthesis in Dioscorea zingiberensis
    Li, Jia
    Liang, Qin
    Li, Changfu
    Liu, Mengdi
    Zhang, Yansheng
    MOLECULES, 2018, 23 (02):
  • [47] Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis
    Liu, Yuhui
    Kui Lin-Wang
    Deng, Cecilia
    Warran, Ben
    Wang, Li
    Yu, Bin
    Yang, Hongyu
    Wang, Jing
    Espley, Richard V.
    Zhang, Junlian
    Wang, Di
    Allan, Andrew C.
    PLOS ONE, 2015, 10 (06):
  • [48] Comparative transcriptome analysis of root, stem, and leaf tissues of Entada phaseoloides reveals potential genes involved in triterpenoid saponin biosynthesis
    Weifang Liao
    Zhinan Mei
    Lihong Miao
    Pulin Liu
    Ruijie Gao
    BMC Genomics, 21
  • [49] Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins
    Sui, Chun
    Zhang, Jie
    Wei, Jianhe
    Chen, Shilin
    Li, Ying
    Xu, Jiesen
    Jin, Yue
    Xie, Caixiang
    Gao, Zhihui
    Chen, Hongjiang
    Yang, Chengmin
    Zhang, Zheng
    Xu, Yanhong
    BMC GENOMICS, 2011, 12
  • [50] Comparative Transcriptome Analysis and Expression of Genes Reveal the Biosynthesis and Accumulation Patterns of Key Flavonoids in Different Varieties of Zanthoxylum bungeanum Leaves
    Sun, Leiwen
    Yu, Danmeng
    Wu, Zhaochen
    Wang, Cheng
    Yu, Li
    Wei, Anzhi
    Wang, Dongmei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2019, 67 (48) : 13258 - 13268