Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation

被引:32
|
作者
Liang, Wenxian [1 ,2 ]
Ni, Lin [2 ,3 ]
Carballar-Lejarazu, Rebeca [4 ]
Zou, Xiaoxing [1 ,2 ]
Sun, Weihong [1 ,2 ]
Wu, Lingjiao [1 ,2 ]
Yuan, Xueyuan [1 ,2 ]
Mao, Yanling [2 ,5 ]
Huang, Wei [2 ,6 ]
Zou, Shuangquan [1 ,2 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Forestry, Fuzhou, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Fujian Coll & Univ Engn Res Inst Conservat & Util, Fuzhou, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Plant Protect, Fuzhou, Fujian, Peoples R China
[4] Univ Calif Irvine, Dept Microbiol & Mol Genet, Irvine, CA 92717 USA
[5] Fujian Agr & Forestry Univ, Coll Resources & Environm, Fuzhou, Fujian, Peoples R China
[6] Fujian Agr & Forestry Univ, Coll Life Sci, Fuzhou, Fujian, Peoples R China
基金
美国国家科学基金会;
关键词
Euscaphis konishii Hayata; Transcriptome; Gene expression; Flavonoid; Biosynthesis; Transport; Transcrip factor; MEDICINAL-PLANTS; JAPONICA; IDENTIFICATION; EXPRESSION; LEAVES; ACID; PROANTHOCYANIDINS; CONSTITUENTS; METABOLISM; GLYCOSIDES;
D O I
10.1186/s12864-018-5354-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BachgroundEuscaphis konishii Hayata, a member of the Staphyleaceae Family, is a plant that has been widely used in Traditional Chinese Medicine and it has been the source for several types of flavonoids. To identify candidate genes involved in flavonoid biosynthesis and accumulation, we analyzed transcriptome data from three E. konishii tissues (leaf, branch and capsule) using Illumina Hiseq 2000 platform.ResultsA total of 91.7, 100.3 and 100.1million clean reads were acquired for the leaf, branch and capsule, respectively; and 85,342 unigenes with a mean length of 893.60bp and N50 length of 1307nt were assembled usingTrinity program. BLASTx analysis allowed to annotate 40,218 unigenes using public protein databases, including NR, KOG/COG/eggNOG, Swiss-Prot, KEGG and GO. A total of 14,291 (16.75%) unigenes were assigned to 128 KEGG pathways, and 900 unigenes were annotated into 22 KEGG secondary metabolites, including flavonoid biosynthesis. The structure enzymes involved in flavonoid biosynthesis, such as phenylalanine ammonia lyase, cinnamate 4-hydroxylase, 4-coumarate CoA ligase, shikimate O-hydroxycinnamoyltransferase,coumaroylquinate 3-monooxygenase, caffeoyl-CoA O-methyltransferase, chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, flavonoid 3-hydroxylase, flavonoid 3,5-hydroxylase, flavonolsynthese, dihydroflavonol 4-reductase, anthocyanidinreductase, leucoanthocyanidin dioxygenase, leucoanthocyanidin reductase, were identified in the transcriptome data, 40 UDP-glycosyltransferase (UGT), 122 Cytochrome P450 (CYP) and 25 O-methyltransferase (OMT) unigenes were also found. A total of 295 unigenes involved in flavonoid transport and 220 transcription factors (97 MYB, 84 bHLH and 39 WD40) were identified. Furthermore, their expression patterns among different tissues were analyzed by DESeq, the differentially expressed genes may play important roles in tissues-specific synthesis, accumulation and modification of flavonoids.ConclusionWe present here the de novo transcriptome analysis of E. konishii and the identification of candidate genes involved in biosynthesis and accumulation of flavonoid. In general, these results are an important resource for further research on gene expression, genomic and functional genomics in E. konishii and other related species.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Transcriptome analysis of Polygonatum cyrtonema Hua: identification of genes involved in polysaccharide biosynthesis
    Wang, Chenkai
    Peng, Daiyin
    Zhu, Jinhang
    Zhao, Derui
    Shi, Yuanyuan
    Zhang, Shengxiang
    Ma, Kelong
    Wu, Jiawen
    Huang, Luqi
    PLANT METHODS, 2019, 15 (1)
  • [32] Identification of Genes Involved in Flavonoid Biosynthesis in Sophora japonica Through Transcriptome Sequencing
    Zhang, Fu-Sheng
    Wang, Qian-Yu
    Pu, Ya-Jie
    Chen, Tong-Yao
    Qin, Xue-Mei
    Gao, Jie
    CHEMISTRY & BIODIVERSITY, 2017, 14 (12)
  • [33] Transcriptome analysis reveals novel genes involved in anthocyanin biosynthesis in the flesh of peach
    Cao, Ke
    Ding, Tiyu
    Mao, Dongmin
    Zhu, Gengrui
    Fang, Weichao
    Chen, Changwen
    Wang, Xinwei
    Wang, Lirong
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 123 : 94 - 102
  • [34] Comparative transcriptome analysis of leaf, stem, and root tissues of Semiliquidambar cathayensis reveals candidate genes involved in terpenoid biosynthesis
    Xiaoming Tian
    Lihong Yan
    Liyuan Jiang
    Guangfeng Xiang
    Gaofei Li
    Lu Zhu
    Jia Wu
    Molecular Biology Reports, 2022, 49 : 5585 - 5593
  • [35] De novo Transcriptome Analysis Revealed Genes Involved in Flavonoid and Vitamin C Biosynthesis in Phyllanthus emblica (L.)
    Kumar, Avneesh
    Kumar, Sunil
    Bains, Savita
    Vaidya, Vanya
    Singh, Baljinder
    Kaur, Ravneet
    Kaur, Jagdeep
    Singh, Kashmir
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [36] Comparative Transcriptome Analysis of Cynanchum thesioides Under Drought Stress Reveals Candidate Genes Involved in Succinic Acid Biosynthesis
    Zhang, Xiaoyan
    Zhang, Fenglan
    Li, Zhi
    Yang, Zhongren
    Hao, Lizhen
    Zhao, Hongyu
    JOURNAL OF PLANT BIOLOGY, 2023, 66 (03) : 283 - 295
  • [37] Comparative Transcriptome Analysis to Reveal Genes Involved in Wheat Hybrid Necrosis
    Zhang, Yong
    Cheng, Yan
    Guo, Jiahui
    Yang, Ennian
    Liu, Cheng
    Zheng, Xuelian
    Deng, Kejun
    Zhou, Jianping
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2014, 15 (12) : 23332 - 23344
  • [38] Combined metabolomic and transcriptomic analysis reveals key candidate genes involved in the regulation of flavonoid accumulation in Anoectochilus roxburghii
    Chen, Ying
    Pan, Wangyun
    Jin, Sha
    Lin, Sizu
    PROCESS BIOCHEMISTRY, 2020, 91 : 339 - 351
  • [39] Integrative Analysis of Metabolome and Transcriptome Identifies Potential Genes Involved in the Flavonoid Biosynthesis in Entada phaseoloides Stem
    Lin, Min
    Zhou, Zhuqing
    Mei, Zhinan
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [40] Transcriptome Analysis Reveals Key Genes Involved in Fatty Acid and Triacylglycerol Accumulation in Developing Sunflower Seeds
    Meng, Wanqiu
    Zeng, Linglu
    Yang, Xiuli
    Chen, Dawei
    Sun, Li
    GENES, 2025, 16 (04)