Weakly-supervised learning for lung carcinoma classification using deep learning

被引:159
作者
Kanavati, Fahdi [1 ]
Toyokawa, Gouji [2 ]
Momosaki, Seiya [3 ]
Rambeau, Michael [4 ]
Kozuma, Yuka [2 ]
Shoji, Fumihiro [2 ]
Yamazaki, Koji [2 ]
Takeo, Sadanori [2 ]
Iizuka, Osamu [4 ]
Tsuneki, Masayuki [1 ,4 ]
机构
[1] Medmain Inc, Medmain Res, Fukuoka 8100042, Japan
[2] Kyushu Med Ctr, Natl Hosp Org, Clin Res Inst, Dept Thorac Surg, Fukuoka 8108563, Japan
[3] Kyushu Med Ctr, Natl Hosp Org, Clin Res Inst, Dept Pathol, Fukuoka 8108563, Japan
[4] Medmain Inc, Fukuoka 8100042, Japan
关键词
PATHOLOGY CHALLENGES; IMAGE-ANALYSIS; CANCER;
D O I
10.1038/s41598-020-66333-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lung cancer is one of the major causes of cancer-related deaths in many countries around the world, and its histopathological diagnosis is crucial for deciding on optimum treatment strategies. Recently, Artificial Intelligence (AI) deep learning models have been widely shown to be useful in various medical fields, particularly image and pathological diagnoses; however, AI models for the pathological diagnosis of pulmonary lesions that have been validated on large-scale test sets are yet to be seen. We trained a Convolution Neural Network (CNN) based on the EfficientNet-B3 architecture, using transfer learning and weakly-supervised learning, to predict carcinoma in Whole Slide Images (WSIs) using a training dataset of 3,554 WSIs. We obtained highly promising results for differentiating between lung carcinoma and non-neoplastic with high Receiver Operator Curve (ROC) area under the curves (AUCs) on four independent test sets (ROC AUCs of 0.975, 0.974, 0.988, and 0.981, respectively). Development and validation of algorithms such as ours are important initial steps in the development of software suites that could be adopted in routine pathological practices and potentially help reduce the burden on pathologists.
引用
收藏
页数:11
相关论文
共 36 条
[1]  
ABADI M, 2015, TENSORFLOW LARGE SCA
[2]  
Andrews S, 2002, EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, P943
[3]   Robust Object Tracking with Online Multiple Instance Learning [J].
Babenko, Boris ;
Yang, Ming-Hsuan ;
Belongie, Serge .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) :1619-1632
[4]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]   Artificial Intelligence in Pathology [J].
Chang, Hye Yoon ;
Jung, Chan Kwon ;
Woo, Junwoo Isaac ;
Lee, Sanghun ;
Cho, Joonyoung ;
Kim, Sun Woo ;
Kwak, Tae-Yeong .
JOURNAL OF PATHOLOGY AND TRANSLATIONAL MEDICINE, 2019, 53 (01) :1-12
[7]   The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository [J].
Clark, Kenneth ;
Vendt, Bruce ;
Smith, Kirk ;
Freymann, John ;
Kirby, Justin ;
Koppel, Paul ;
Moore, Stephen ;
Phillips, Stanley ;
Maffitt, David ;
Pringle, Michael ;
Tarbox, Lawrence ;
Prior, Fred .
JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) :1045-1057
[8]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[9]   Solving the multiple instance problem with axis-parallel rectangles [J].
Dietterich, TG ;
Lathrop, RH ;
LozanoPerez, T .
ARTIFICIAL INTELLIGENCE, 1997, 89 (1-2) :31-71
[10]  
Efron B., 1994, An introduction to the bootstrap