Learning the Model Update for Siamese Trackers

被引:359
|
作者
Zhang, Lichao [1 ]
Gonzalez-Garcia, Abel [1 ]
van de Weijer, Joost [1 ]
Danelljan, Martin [2 ]
Khan, Fahad Shahbaz [3 ,4 ]
机构
[1] Univ Autonoma Barcelona, Comp Vis Ctr, Barcelona, Spain
[2] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
[3] Incept Inst Artificial Intelligence, Abu Dhabi, U Arab Emirates
[4] Linkoping Univ, Comp Vis Lab, Linkoping, Sweden
来源
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019) | 2019年
关键词
TRACKING;
D O I
10.1109/ICCV.2019.00411
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Siamese approaches address the visual tracking problem by extracting an appearance template from the current frame, which is used to localize the target in the next frame. In general, this template is linearly combined with the accumulated template from the previous frame, resulting in an exponential decay of information over time. While such an approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update. Therefore, we propose to replace the handcrafted update function with a method which learns to update. We use a convolutional neural network, called UpdateNet, which given the initial template, the accumulated template and the template of the current frame aims to estimate the optimal template for the next frame. The UpdateNet is compact and can easily be integrated into existing Siamese trackers. We demonstrate the generality of the proposed approach by applying it to two Siamese trackers, SiamFC and DaSiamRPN. Extensive experiments on VOT2016, VOT2018, LaSOT, and TrackingNet datasets demonstrate that our UpdateNet effectively predicts the new target template, outperforming the standard linear update. On the large-scale TrackingNet dataset, our UpdateNet improves the results of DaSiamRPN with an absolute gain of 3.9% in terms of success score. Code and models are available at https://github.com/zhanglichao/updatenet.
引用
收藏
页码:4009 / 4018
页数:10
相关论文
共 50 条
  • [1] Bidirectional Consistency Constrained Template Update Learning for Siamese Trackers
    Chen, Kexin
    Zhou, Xue
    Liang, Chao
    Zou, Jianxiao
    2020 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2020, : 527 - 530
  • [2] An Adaptive Template Update Network for Siamese Trackers
    Zhang, Tianyu
    Yan, Yan
    2021 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2021,
  • [3] Learning to Fuse Asymmetric Feature Maps in Siamese Trackers
    Han, Wencheng
    Dong, Xingping
    Khan, Fahad Shahbaz
    Shao, Ling
    Shen, Jianbing
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16565 - 16575
  • [4] Triplet Network Template for Siamese Trackers
    Shi, Tao
    Wang, Donghui
    Ren, Hongge
    IEEE ACCESS, 2021, 9 : 44426 - 44435
  • [5] Distilling Siamese Trackers with Attention Mask
    Sun, Han
    Bai, Yongqiang
    Zhang, Wenbo
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6622 - 6627
  • [6] Attention Template Update Model for Siamese Tracker
    Jia, Fengshou
    Tang, Zhao
    Gao, Yun
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, 2021, 13019 : 229 - 241
  • [7] Adaptive Model Update Strategy for Correlation Filter Trackers
    He, Zhuang
    Li, Qi
    Chang, Meng
    Feng, Huajun
    Xu, Zhihai
    IEEE ACCESS, 2019, 7 : 151493 - 151505
  • [8] Updating Siamese trackers using peculiar mixup
    Fei Wu
    Jianlin Zhang
    Zhiyong Xu
    Andreas Maier
    Vincent Christlein
    Applied Intelligence, 2023, 53 : 22531 - 22545
  • [9] Motion Guided Siamese Trackers for Visual Tracking
    Wu, Chenglong
    Zhang, Yue
    Zhang, Yi
    Zhang, Wenkai
    Wang, Hongqi
    Zhang, Yunyan
    Sun, Xian
    IEEE ACCESS, 2020, 8 : 7473 - 7489
  • [10] Updating Siamese trackers using peculiar mixup
    Wu, Fei
    Zhang, Jianlin
    Xu, Zhiyong
    Maier, Andreas
    Christlein, Vincent
    APPLIED INTELLIGENCE, 2023, 53 (19) : 22531 - 22545