Bayesian Variable Selection for Latent Class Models

被引:12
|
作者
Ghosh, Joyee [1 ]
Herring, Amy H. [2 ,3 ]
Siega-Riz, Anna Maria [3 ,4 ]
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Carolina Populat Ctr, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Epidemiol, Dept Nutr, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Bayesian model averaging; Finite mixture model; Markov chain Monte Carlo; Multinomial logit model; Variable selection; INFERENCE; REGRESSION; MIXTURES; DENSITY; BINARY;
D O I
10.1111/j.1541-0420.2010.01502.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.
引用
收藏
页码:917 / 925
页数:9
相关论文
共 50 条
  • [41] Bayesian latent variable models for the analysis of experimental psychology data
    Merkle, Edgar C.
    Wang, Ting
    PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 256 - 270
  • [42] Bayesian inference and model selection in latent class logit models with parameter constraints: an application to market segmentation
    Oh, MS
    Choi, JW
    Kim, DG
    JOURNAL OF APPLIED STATISTICS, 2003, 30 (02) : 191 - 204
  • [43] Variable selection for latent class analysis using clustering efficiency
    Kim, Seongkyung
    Seo, Byungtae
    KOREAN JOURNAL OF APPLIED STATISTICS, 2018, 31 (06) : 721 - 732
  • [44] Bayesian latent factor regression for multivariate functional data with variable selection
    Noh, Heesang
    Choi, Taeryon
    Park, Jinsu
    Chung, Yeonseung
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2020, 49 (03) : 901 - 923
  • [45] Bayesian latent factor regression for multivariate functional data with variable selection
    Heesang Noh
    Taeryon Choi
    Jinsu Park
    Yeonseung Chung
    Journal of the Korean Statistical Society, 2020, 49 : 901 - 923
  • [46] Bayesian hierarchical latent class models for estimating diagnostic accuracy
    Wang, Chunling
    Lin, Xiaoyan
    Nelson, Kerrie P.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (04) : 1112 - 1128
  • [47] Variable selection for spatial latent predictors under Bayesian spatial model
    Cai, Bo
    Lawson, Andrew B.
    McDermott, Suzanne
    Aelion, C. Marjorie
    STATISTICAL MODELLING, 2011, 11 (06) : 535 - 555
  • [48] Bayesian Latent Class Models for the Multiple Imputation of Categorical Data
    Vidotto, Davide
    Vermunt, Jeroen K.
    Van Deun, Katrijn
    METHODOLOGY-EUROPEAN JOURNAL OF RESEARCH METHODS FOR THE BEHAVIORAL AND SOCIAL SCIENCES, 2018, 14 (02) : 56 - 68
  • [49] BAYESIAN INFERENCES OF LATENT CLASS MODELS WITH AN UNKNOWN NUMBER OF CLASSES
    Pan, Jia-Chiun
    Huang, Guan-Hua
    PSYCHOMETRIKA, 2014, 79 (04) : 621 - 646
  • [50] Bayesian Inferences of Latent Class Models with an Unknown Number of Classes
    Pan J.-C.
    Huang G.-H.
    Psychometrika, 2014, 79 (4) : 621 - 646