Bayesian Variable Selection for Latent Class Models

被引:12
|
作者
Ghosh, Joyee [1 ]
Herring, Amy H. [2 ,3 ]
Siega-Riz, Anna Maria [3 ,4 ]
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Carolina Populat Ctr, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Epidemiol, Dept Nutr, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Bayesian model averaging; Finite mixture model; Markov chain Monte Carlo; Multinomial logit model; Variable selection; INFERENCE; REGRESSION; MIXTURES; DENSITY; BINARY;
D O I
10.1111/j.1541-0420.2010.01502.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.
引用
收藏
页码:917 / 925
页数:9
相关论文
共 50 条
  • [1] Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler
    White, Arthur
    Wyse, Jason
    Murphy, Thomas Brendan
    STATISTICS AND COMPUTING, 2016, 26 (1-2) : 511 - 527
  • [2] Bayesian variable selection for latent class analysis using a collapsed Gibbs sampler
    Arthur White
    Jason Wyse
    Thomas Brendan Murphy
    Statistics and Computing, 2016, 26 : 511 - 527
  • [3] Fully Gibbs Sampling Algorithms for Bayesian Variable Selection in Latent Regression Models
    Yamaguchi, Kazuhiro
    Zhang, Jihong
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2023, 60 (02) : 202 - 234
  • [4] Latent class analysis variable selection
    Nema Dean
    Adrian E. Raftery
    Annals of the Institute of Statistical Mathematics, 2010, 62 : 11 - 35
  • [5] Latent class analysis variable selection
    Dean, Nema
    Raftery, Adrian E.
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (01) : 11 - 35
  • [6] Gaussian Latent Variable Models for Variable Selection
    Jiang, Xiubao
    You, Xinge
    Mou, Yi
    Yu, Shujian
    Zeng, Wu
    2014 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2014, : 353 - 357
  • [7] Bayesian estimation and model selection in ordered latent class models for polytomous items
    M. J. H. van Onna
    Psychometrika, 2002, 67 : 519 - 538
  • [8] Bayesian estimation and model selection in ordered latent class models for polytomous items
    Van Onna, MJH
    PSYCHOMETRIKA, 2002, 67 (04) : 519 - 538
  • [9] Variable assessment in latent class models
    Zhang, Q.
    Ip, E. H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 77 : 146 - 156
  • [10] Bayesian hypothesis testing in latent variable models
    Li, Yong
    Yu, Jun
    JOURNAL OF ECONOMETRICS, 2012, 166 (02) : 237 - 246