Bayesian Variable Selection for Latent Class Models

被引:14
作者
Ghosh, Joyee [1 ]
Herring, Amy H. [2 ,3 ]
Siega-Riz, Anna Maria [3 ,4 ]
机构
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Univ N Carolina, Dept Biostat, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Carolina Populat Ctr, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Dept Epidemiol, Dept Nutr, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Bayesian model averaging; Finite mixture model; Markov chain Monte Carlo; Multinomial logit model; Variable selection; INFERENCE; REGRESSION; MIXTURES; DENSITY; BINARY;
D O I
10.1111/j.1541-0420.2010.01502.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.
引用
收藏
页码:917 / 925
页数:9
相关论文
共 32 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]  
[Anonymous], WEIGHT GAIN DUR PREG
[3]  
Celeux G, 2006, BAYESIAN ANAL, V1, P651, DOI 10.1214/06-BA122
[4]   Flexible empirical Bayes estimation for wavelets [J].
Clyde, M ;
George, EI .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 :681-698
[5]   Dietary energy density but not glycemic load is associated with gestational weight gain [J].
Deierlein, Andrea L. ;
Siega-Riz, Anna Maria ;
Herring, Amy .
AMERICAN JOURNAL OF CLINICAL NUTRITION, 2008, 88 (03) :693-699
[6]  
Devroye L., 1986, NONUNIFORM RANDOM VA
[7]   Bayesian Inference on Changes in Response Densities Over Predictor Clusters [J].
Dunson, David B. ;
Herring, Amy H. ;
Siega-Riz, Anna Maria .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (484) :1508-1517
[8]   Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction [J].
Elliott, MR ;
Gallo, JJ ;
Ten Have, TR ;
Bogner, HR ;
Katz, IR .
BIOSTATISTICS, 2005, 6 (01) :119-143
[9]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[10]  
Frühwirth-Schnatter S, 2010, STATISTICAL MODELLING AND REGRESSION STRUCTURES, P111, DOI 10.1007/978-3-7908-2413-1_7